Machine Learning is a division of Artificial Intelligence which builds a system that learns from the data. Machine learning has the capability of taking the raw data from the repository which can do the computation and can predict the software bug. It is always desirable to detect the software bug at the earliest so that time and cost can be reduced. Feature selection technique wrapper and filter method is used to find the most optimal software metrics. The main aim of the paper is to find the best model for the software bug prediction. In this paper machine learning techniques linear Regression, Random Forest, Neural Network, Support Vector Machine, Decision Tree, Decision Stump are used and comparative analysis has been done using performance parameters such as correlation, R-squared, mean square error, accuracy for software modules named as ant, ivy, tomcat, berek, camel, lucene, poi, synapse and velocity. Support vector machine outperform as compare to other machine learning model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.