In this paper, a novel solid state Nitric Oxide (NO) sensor made of a spin trap (iron(II)-diethyldithiocarbamate complex, FeDETC) encapsulated in a siloxane-poly(oxypropylene) (PPO) matrix was developed. Nitric oxide (NO), a free radical molecule, has numerous roles in various physiological functions, such as the regulation of blood pressure, immune response to bacterial infection, and nervous systems. Siloxane-polyether hybrid materials, for example siloxanepoly(oxypropylene) (PPO), are easy to prepare, transparent and flexible. The combination of all these characteristics in a unique material allows it to be used in several scientific and technological areas, including human health. NO radical is trapped in FeDETC, which allows its detection by electron paramagnetic resonance (EPR). FeDETC was added while PPO was a sol, which was then left in air for gelation. The novel sensor was dived directly into a solution of NO, when the NO-FeDETC complex was formed. Our results show that the novel sensor responds to NO, with similar sensitivity as previously published sensors. PPO sensors present a strong EPR signal and a high stability, keeping its signal for 45 days. We have studied ways to accelerate the NO release from the sensor, in order to study its potential as a drug delivery system. We observed an acceleration in NO release by using a modulated magnetic field of 40 G at 100 kHz; as well as by UV irradiation. Thermal induced NO release was also tested by heating NO-FeDETC PPO up to 50˚C, with good results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.