Background Flowerpiercers (Diglossa) are traditionally considered as “parasites” of the pollination processes, as they can access the nectar without entering in contact with the reproductive structures of the plants. Nevertheless, the effect of flowerpiercers seems to vary according to their behavior and the flower’s traits. So, in this work, we aimed to explore the floral characteristics that may determine the susceptibility to robbing and pollen transport by flowerpiercers. Also, we identified the potential types of interactions and studied interaction network properties. Methods We collected the information of 16 ornithophilic plants regarding their floral traits and robbing frequency. Also, we captured 4 species of flowerpiercers and evaluated pollen transport (frequency and loads). We tested the correlation between floral traits, robbing frequency, and pollen transportation. Later, we used these variables in a cluster and principal component analyses to identify the potential types of interactions. Finally, we analyzed and compared the structure of the plants-flowerpiercers interaction network. Results Nectar production significantly influenced both nectar robbing and pollen transportation. While the corolla length was only correlated to the robbing susceptibility. Also, we found that particular flowerpiercers species transported higher loads of some plant pollen, which can be related to the differences in behavior and morphometric traits. We proposed the classification of five different types of plant-flowerpiercer interactions, that showed different potential mutualist or antagonist relations based on the affectation of nectar robbing and the service of pollen transportation. The interaction networks consisted of 49 links, with 2.4 links per species, and presented indicators of a medium to high resilience, stability, and resistance (nestedness, connectance, and robustness). Also, the network presented medium to low specialization and substantial niche overlap. Conclusions The ecological role of the flowerpiercers goes beyond its classic assignation as “parasites” as they can actively transport pollen of several Andean plants, affecting its evolutionary history and the stability of the systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.