Petrobras developed a new kind of anchoring device known as Torpedo. This is a steel pile of appropriate weight and shape that is launched in a free fall procedure to be used as fixed anchoring point by any type of floating unit. There are two Torpedoes, T-43 and T-98 weighing 43 and 98 metric tons respectively. On October 2002 T-43 was tested offshore Brazil in Campos Basin. The successful results approved and certified by Bureau Veritas, and the need for a feasible anchoring system for new Petrobras Units in deep water fields of Campos Basin led to the development of a Torpedo with High Holding Power. Petrobras FPSO P-50, a VLCC that is being converted with a spread-mooring configuration will be installed in Albacora Leste field in the second semester of 2004. Its mooring analysis showed that the required holding power for the mooring system would be very high. Drag embedment anchors option would require four big Anchor Handling Vessels for anchor tensioning operations at 1400 m water depth. For this purpose T-98 was designed and its field tests were completed in April 2003. This paper discusses T-98 design, building, tests and ABS certification for FPSO P-50.
The installation procedure of a torpedo anchor is the release of the torpedo from a high enough position from the sea bottom to allow the device to reach the terminal velocity. A sufficient kinetic energy at the bottom is essential for the penetration. Besides this, the anchor has to reach the bottom in an upright position to maximize the final holding power in all directions. The present work addresses two hydrodynamic aspects for the installation design and analysis. The first is the drag evaluation and the second is the directional stability. If the drag is to be kept small, then the terminal velocity should be high. The work shows that parameters like the mass and the shape are essential for this. On the other hand, the shape and mass distribution have a strong influence on the directional stability. One important parameter is the rear line length connected to the anchor. This line is necessary for further connection with the final mooring line and influences both the terminal velocity and the directional stability. The work addresses all these aspects under the light of an innovative model test setup to be performed in a deep ocean basin. This kind of model testing has been conceived specifically to attend the torpedo anchor evaluation.
Offshore oil production with the employment of FPSOs (Floating, Production, Storage and Offloading) unit faces the challenge of increasing well volumes, processing and storage capacity and ultimately oil offloading and transportation. Following the natural activity development in some oil fields, the number of spread-moored FPSOs and the employment of Dynamic Positioning Shuttle Tankers increased, however represent altogether a bottleneck for the production capacity and considerable transportation cost increment. The need to implement alternatives for the use of larger and conventional tankers is evident, and several attempts and use of technology are being tested and proposed. The work presents preliminary numerical and cost analysis of an innovative Oil Loading Terminal (OLT) for deep water. Based on field data, metocean studies and extensive practical experience, the OLT should allow direct offloading from the FPSOs onto conventional shuttle tankers including VLCCs. The OLT concept allows the transfer of oil from an FPSO to a conventional tanker moored in CALM Buoy through submerged oil offloading lines (OOLs) supported by a tethered submerged buoy. The conventional tanker will receive the oil through a floating hose string. The cornerstone of this OLT concept is the subsurface buoy application to support the OLLs and consequently de-coupling the FPSO and CALM Buoy motions simultaneously. As a result, the OOLs loads and fatigue efforts under the CALM Buoy also decrease. The paper evaluates an OLT specific conception for the Brazilian offshore pre-salt area and results related to the numerical analysis carried out are presented considering one submerged buoy connected to a FPSO and CALM Buoy via flexible offloading lines respectively. The results appoint to a technically feasible solution that can be complementarily laboratory and field tested. Further, the solution cost impact has been assessed and initial figures demonstrate that the final testing, construction and installation of one system will need investment that cost a fraction of tanker lifting costs currently requiring Ship-to-Ship oil transfers. The economies assessed with the use of this innovative solution include total avoidance of Ship-to-Ship costs; cuts transportation cost per ton in up to 50% (fifty percent), eliminates offloading bottlenecks allowing better use of FPSO storage and plant processing capacity, and ultimately decreases the number of tanker offloading operations with considerable benefit to operational safety by reducing risk exposure.
Due to the 2200m water depth and harsher environmental conditions, one option that Petrobras is considering for the production of the Pre-Salt fields is the use of a subsurface buoy known as a Buoy Supporting Riser (BSR). It is composed of a subsurface tethered buoy, flexible jumpers connecting the Floating Production Unit (FPU) to the BSR and Steel Catenary Risers (SCRs) connecting the BSR to the flowlines on the sea bottom. The main advantages of this system are that it decouples the FPU motions from the SCRs, reducing fatigue damage in the touch down zone. It may also be installed independently of the FPU, except for the flexible jumpers, which would reduce the risers load on the FPU. Petrobras has been studying this concept since 1997 and has established, as a final stage of the study, a field test with the actual installation of the BSR. This was performed through an alternative method using only Petrobras AHTS boats, in order to avoid critical and expensive resources such as lift barges. With the purpose of validating this new installation procedure, Petrobras performed the referred installation of a 27.2m × 27.2m square ring shaped buoy in Congro Field in the Campos Basin over a water depth of 500m. The buoy was positioned at 80m depth, where the incidence of loads caused by waves is negligible, thus increasing the fatigue life of risers. After the BSR installation, the riser pull-in procedure was also conduced. This paper describes why this technology is necessary for these fields and the model tests made to validate the installation procedures. It also discusses how Petrobras tested the pull-in operations for two flexible risers after the actual buoy was installed. Monitoring systems were designed to check all forces and displacements during the referred installation. These actions will consolidate the BSR technology for Petrobras leading to another riser system option for production in ultra deep waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.