In electrical protection, there is a method of electrical protection of buildings against atmospheric discharges called the electro-geometric method or the rolling sphere method. So far, it is possible to achieve the implementation of this method graphically, that is, representing through plans and technical drawings, the protection conditions of the analyzed structure and obtaining from these graphic representations the protection parameters with the consequent errors caused by the scales and dimensions of the work plane. In the present work, a mathematical model is obtained that allows, using specific calculations, to analyze the dynamic behavior of a protection system against atmospheric discharges without worrying about the limitations given by the scales and planes. The set of equations obtained in the model allows us to determine the different parameters that define the protection system against atmospheric discharges (lightning) without depending on the graphical representation of the system's topology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.