The transcriptomic datasets of the plant model organism Arabidopsis thaliana grown in the International Space Station provided by GeneLab have been mined to isolate the impact of spaceflight microgravity on gene expressions related to root growth. A set of computational tools is used to identify the hub genes that respond differently in spaceflight with controlled lighting compared to on the ground. These computational tools based on graph-theoretic approaches are used to infer gene regulatory networks from the transcriptomic datasets. The three main algorithms used for network analyses are LASSO, Pearson correlation, and the HITS algorithm. Graph-based spectral analyses reveal distinct properties of the spaceflight microgravity networks for the WS, Col-0, and mutant phyD ecotypes. The set of hub genes that are significantly altered in spaceflight microgravity are mainly involved in cell wall synthesis, protein transport, response to auxin, stress responses, and catabolic processes. Network analysis highlights five important root growth-regulating hub genes that have the highest outdegree distribution in spaceflight microgravity networks. These concerned genes coding for proteins are identified from the Gene Regulatory Networks (GRNs) corresponding to spaceflight total light environment. Furthermore, network analysis uncovers genes that encode nucleotide-diphospho-sugar interconversion enzymes that have higher transcriptional regulation in spaceflight microgravity and are involved in cell wall biosynthesis.
Ionizing radiation present in extraterrestrial environment is an important factor that affects plants grown in spaceflight. Pearson correlation-based gene regulatory network inferencing from transcriptional responses of the plant Arabidopsis thaliana L. grown in real and simulated spaceflight conditions acquired by GeneLab, followed by topological and spectral analysis of the networks is performed. Gene regulatory subnetworks are extracted for DNA damage response processes. Analysis of radiation-induced ATR/ATM protein–protein interactions in Arabidopsis reveals interaction profile similarities under low radiation doses suggesting novel mechanisms of DNA damage response involving non-radiation-induced genes regulating other stress responses in spaceflight. The Jaccard similarity index shows that the genes AT2G31320, AT4G21070, AT2G46610, and AT3G27060 perform similar functions under low doses of radiation. The incremental association Markov blanket method reveals non-radiation-induced genes linking DNA damage response to root growth and plant development. Eighteen radiation-induced genes and sixteen non-radiation-induced gene players have been identified from the ATR/ATM protein interaction complexes involved in heat, salt, water, osmotic stress responses, and plant organogenesis. Network analysis and logistic regression ranking detected AT3G27060, AT1G07500, AT5G66140, and AT3G21280 as key gene players involved in DNA repair processes. High atomic weight, high energy, and gamma photon radiation result in higher intensity of DNA damage response in the plant resulting in elevated values for several network measures such as spectral gap and girth. Nineteen flavonoid and carotenoid pigment activations involved in pigment biosynthesis processes are identified in low radiation dose total light spaceflight environment but are not found to have significant regulations under very high radiation dose environment.
Muscle atrophy is a side effect of several terrestrial diseases which also affects astronauts severely in space missions due to the reduced gravity in spaceflight. An integrative graph-theoretic network-based drug repurposing methodology quantifying the interplay of key gene regulations and protein–protein interactions in muscle atrophy conditions is presented. Transcriptomic datasets from mice in spaceflight from GeneLab have been extensively mined to extract the key genes that cause muscle atrophy in organ muscle tissues such as the thymus, liver, and spleen. Top muscle atrophy gene regulators are selected by Bayesian Markov blanket method and gene–disease knowledge graph is constructed using the scalable precision medicine knowledge engine. A deep graph neural network is trained for predicting links in the network. The top ranked diseases are identified and drugs are selected for repurposing using drug bank resource. A disease drug knowledge graph is constructed and the graph neural network is trained for predicting new drugs. The results are compared with machine learning methods such as random forest, and gradient boosting classifiers. Network measure based methods shows that preferential attachment has good performance for link prediction in both the gene–disease and disease–drug graphs. The receiver operating characteristic curves, and prediction accuracies for each method show that the random walk similarity measure and deep graph neural network outperforms the other methods. Several key target genes identified by the graph neural network are associated with diseases such as cancer, diabetes, and neural disorders. The novel link prediction approach applied to the disease drug knowledge graph identifies the Monoclonal Antibodies drug therapy as suitable candidate for drug repurposing for spaceflight induced microgravity. There are a total of 21 drugs identified as possible candidates for treating muscle atrophy. Graph neural network is a promising deep learning architecture for link prediction from gene–disease, and disease–drug networks.
Spaceflight microgravity affects normal plant growth in several ways. The transcriptional dataset of the plant model organism Arabidopsis thaliana grown in the international space station is mined using graph-theoretic network analysis approaches to identify significant gene transcriptions in microgravity essential for the plant’s survival and growth in altered environments. The photosynthesis process is critical for the survival of the plants in spaceflight under different environmentally stressful conditions such as lower levels of gravity, lesser oxygen availability, low atmospheric pressure, and the presence of cosmic radiation. Lasso regression method is used for gene regulatory network inferencing from gene expressions of four different ecotypes of Arabidopsis in spaceflight microgravity related to the photosynthetic process. The individual behavior of hub-genes and stress response genes in the photosynthetic process and their impact on the whole network is analyzed. Logistic regression on centrality measures computed from the networks, including average shortest path, betweenness centrality, closeness centrality, and eccentricity, and the HITS algorithm is used to rank genes and identify interactor or target genes from the networks. Through the hub and authority gene interactions, several biological processes associated with photosynthesis and carbon fixation genes are identified. The altered conditions in spaceflight have made all the ecotypes of Arabidopsis sensitive to dehydration-and-salt stress. The oxidative and heat-shock stress-response genes regulate the photosynthesis genes that are involved in the oxidation-reduction process in spaceflight microgravity, enabling the plant to adapt successfully to the spaceflight environment.
A framework combining two powerful tools of hyperspectral imaging and deep learning for the processing and classification of hyperspectral images (HSI) of rice seeds is presented. A seed-based approach that trains a three-dimensional convolutional neural network (3D-CNN) using the full seed spectral hypercube for classifying the seed images from high day and high night temperatures, both including a control group, is developed. A pixel-based seed classification approach is implemented using a deep neural network (DNN). The seed and pixel-based deep learning architectures are validated and tested using hyperspectral images from five different rice seed treatments with six different high temperature exposure durations during day, night, and both day and night. A stand-alone application with Graphical User Interfaces (GUI) for calibrating, preprocessing, and classification of hyperspectral rice seed images is presented. The software application can be used for training two deep learning architectures for the classification of any type of hyperspectral seed images. The average overall classification accuracy of 91.33% and 89.50% is obtained for seed-based classification using 3D-CNN for five different treatments at each exposure duration and six different high temperature exposure durations for each treatment, respectively. The DNN gives an average accuracy of 94.83% and 91% for five different treatments at each exposure duration and six different high temperature exposure durations for each treatment, respectively. The accuracies obtained are higher than those presented in the literature for hyperspectral rice seed image classification. The HSI analysis presented here is on the Kitaake cultivar, which can be extended to study the temperature tolerance of other rice cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.