A model of time-dependent structural plasticity for the synchronization of neuron networks is presented. It is known that synchronized oscillations reproduce structured communities, and this synchronization is transient since it can be enhanced or suppressed, and the proposed model reproduces this characteristic. The evolutionary behavior of the couplings is comparable to those of a network of biological neurons. In the structural network, the physical connections of axons and dendrites between neurons are modeled, and the evolution in the connections depends on the neurons’ potential. Moreover, it is shown that the coupling force’s function behaves as an adaptive controller that leads the neurons in the network to synchronization. The change in the node’s degree shows that the network exhibits time-dependent structural plasticity, achieved through the evolutionary or adaptive change of the coupling force between the nodes. The coupling force function is based on the computed magnitude of the membrane potential deviations with its neighbors and a threshold that determines the neuron’s connections. These rule the functional network structure along the time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.