Background -Provision of ambulatory oxygen using an intermittent pulsed flow regulated by a demand oxygen delivery system (DODS) greatly increases the limited supply time of standard portable gaseous cylinders. The efficacy of such a system has not previously been studied during submaximal exercise in subjects with severe chronic obstructive pulmonary disease (COPD) in whom desaturation is likely to be great and where usage is often most appropriate.
These results suggest that site-specific CVC complication rates may be less common than previously reported. These data further inform on the safety of modern CVC insertion techniques across all patient populations and clinical settings.
Objectives Prone positioning is widely used in mechanically ventilated patients with COVID-19; however, the specific clinical scenario in which the individual is most poised to benefit is not fully established. In patients with COVID-19 respiratory failure requiring mechanical ventilation, how effective is prone positioning in improving oxygenation and can that response be predicted? Design This is a retrospective observational study from two tertiary care centers including consecutive patients mechanically ventilated for COVID-19 from 3/1/2020 – 7/1/2021. The primary outcome is improvement in oxygenation as measured by PaO2/FiO2. We describe oxygenation before, during and after prone episodes with a focus on identifying patient, respiratory or ventilator variables that predict prone positioning success. Setting 2 Tertiary Care Academic Hospitals Patients 125 patients mechanically ventilated for COVID-19 respiratory failure. Interventions Prone positioning Main Results One hundred twenty-five patients underwent prone positioning a total of 309 times for a median duration of 23 hours IQR (14 – 49). On average, PaO2/FiO2 improved 19%: from 115 mm Hg (80 – 148) immediately before proning to 137 mm Hg (95 – 197) immediately after returning to the supine position. Prone episodes were more successful if the pre-prone PaO2/FiO2 was lower and if the patient was on inhaled epoprostenol (iEpo). For individuals with severe acute respiratory distress syndrome (ARDS) (PaO2/FiO2 < 100 prior to prone positioning) and on iEpo, the median improvement in PaO2/FiO2 was 27% in both instances. Conclusions Prone positioning in mechanically ventilated patients with COVID-19 is generally associated with sustained improvements in oxygenation, which is made more likely by the concomitant use of iEpo and is more impactful in those who are more severely hypoxemic prior to prone positioning.
Etching microstructures into broad area diode lasers is found to lead to more uniform near field and increased power conversion efficiency, arising from increased slope. Self-consistent device simulation indicates that this improvement is due to an increase in the effective internal injection efficiency above threshold-the nonuniform near field leads to regions of inefficient clamping of the carrier density in the laser stripe. Measurements of spontaneous emission through the substrate confirm the predicted carrier profile. Both experiment and theory show that improved overlap between carrier and power distributions correlates with improved slope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.