SUMMARY Autism spectrum disorder (ASD) is a complex developmental syndrome of unknown etiology. Recent studies employing exome- and genome-wide sequencing have identified nine high-confidence ASD (hcASD) genes. Working from the hypothesis that ASD-associated mutations in these biologically pleiotropic genes will disrupt intersecting developmental processes to contribute to a common phenotype, we have attempted to identify time periods, brain regions, and cell types in which these genes converge. We have constructed coexpression networks based on the hcASD “seed” genes, leveraging a rich expression data set encompassing multiple human brain regions across human development and into adulthood. By assessing enrichment of an independent set of probable ASD (pASD) genes, derived from the same sequencing studies, we demonstrate a key point of convergence in midfetal layer 5/6 cortical projection neurons. This approach informs when, where, and in what cell types mutations in these specific genes may be productively studied to clarify ASD pathophysiology.
SUMMARY Whole-exome sequencing (WES) studies have demonstrated the contribution of de novo loss-of-function single nucleotide variants to autism spectrum disorders (ASD). However, challenges in the reliable detection of de novo insertions and deletions (indels) have limited inclusion of these variants in prior analyses. Through the application of a robust indel detection method to WES data from 787 ASD families (2,963 individuals), we demonstrate that de novo frameshift indels contribute to ASD risk (OR=1.6; 95%CI=1.0-2.7; p=0.03), are more common in female probands (p=0.02), are enriched among genes encoding FMRP targets (p=6×10−9), and arise predominantly on the paternal chromosome (p<0.001). Based on mutation rates in probands versus unaffected siblings, de novo frameshift indels contribute to risk in approximately 3.0% of individuals with ASD. Finally, through observing clustering of mutations in unrelated probands, we report two novel ASD-associated genes: KMT2E (MLL5), a chromatin regulator, and RIMS1, a regulator of synaptic vesicle release.
Morphological innovations such as the mammalian neocortex may involve the evolution of novel regulatory sequences. However, de novo birth of regulatory elements active during morphogenesis has not been extensively studied in mammals. Here, we use H3K27ac-defined regulatory elements active during human and mouse corticogenesis to identify enhancers that were likely active in the ancient mammalian forebrain. We infer the phylogenetic origins of these enhancers and find that ∼20% arose in the mammalian stem lineage, coincident with the emergence of the neocortex. Implementing a permutation strategy that controls for the nonrandom variation in the ages of background genomic sequences, we find that mammal-specific enhancers are overrepresented near genes involved in cell migration, cell signaling, and axon guidance. Mammal-specific enhancers are also overrepresented in modules of coexpressed genes in the cortex that are associated with these pathways, notably ephrin and semaphorin signaling. Our results also provide insight into the mechanisms of regulatory innovation in mammals. We find that most neocortical enhancers did not originate by en bloc exaptation of transposons. Young neocortical enhancers exhibit smaller H3K27ac footprints and weaker evolutionary constraint in eutherian mammals than older neocortical enhancers. Based on these observations, we present a model of the enhancer life cycle in which neocortical enhancers initially emerge from genomic background as short, weakly constrained "proto-enhancers." Many proto-enhancers are likely lost, but some may serve as nucleation points for complex enhancers to evolve.regulatory innovation | neocortical development | epigenetics | brain evolution T he evolution of animal morphology requires changes in fundamental developmental processes. Recent studies suggest that altered gene regulation during development contributes to morphological differences between species (1-4). In several cases, individual regulatory changes have been shown to have strong effects on morphology, including reduction or loss of existing anatomical units (5-7). However, the mechanisms underlying morphological innovation, which includes the emergence of entirely novel anatomical structures and radical transformations of existing structures, remain unclear (see ref. 8).One hypothesis is that morphological innovations are driven by the widespread emergence of new regulatory functions. These may arise through several potential mechanisms: modification of regulatory elements with ancestral functions, exaptation of specific classes of transposons to generate new regulatory sequences, and emergence of new regulatory elements in situ from nonfunctional, unconstrained genomic sequences. Although recent theoretical work in flies suggests that entire regulatory elements can evolve from genomic background on relatively short time scales (9), the de novo generation of regulatory elements by transposon exaptation is a particularly compelling mechanism. Many transposons include binding sites for multiple ...
Genetic changes that altered the function of gene regulatory elements have been implicated in the evolution of human traits such as the expansion of the cerebral cortex. However, identifying the particular changes that modified regulatory activity during human evolution remain challenging. Here we used massively parallel enhancer assays in neural stem cells to quantify the functional impact of >32,000 human-specific substitutions in >4,300 human accelerated regions (HARs) and human gain enhancers (HGEs), which include enhancers with novel activities in humans. We found that >30% of active HARs and HGEs exhibited differential activity between human and chimpanzee. We isolated the effects of human-specific substitutions from background genetic variation to identify the effects of genetic changes most relevant to human evolution. We found that substitutions interacted in both additive and nonadditive ways to modify enhancer function. Substitutions within HARs, which are highly constrained compared to HGEs, showed smaller effects on enhancer activity, suggesting that the impact of human-specific substitutions is buffered in enhancers with constrained ancestral functions. Our findings yield insight into how human-specific genetic changes altered enhancer function and provide a rich set of candidates for studies of regulatory evolution in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.