This study aimed to test the validity of a non-motorised treadmill (NMT) for the measurement of self-paced overground endurance running performance. Ten male runners performed randomised 5-km running time trials on a NMT and an outdoor athletics track. A range of physiological and perceptual responses was measured, and foot strike was classified subjectively. Performance time was strongly correlated (r = 0.82, ICC = 0.86) between running modes, despite running time being significantly longer on the NMT (1264 ± 124 s vs. 1536 ± 130 s for overground and NMT, respectively; P < 0.001). End blood lactate concentration and rating of perceived exertion were significantly higher on the NMT compared to overground. Integrated electromyography was significantly lower on the NMT for three muscles (P < 0.05), and mean stride rate was also significantly lower on the NMT (P = 0.04). Cardiorespiratory responses of heart rate, oxygen uptake and expired air volume demonstrated strong correlations (r = 0.68-0.96, ICC = 0.75-0.97) and no statistical differences (P > 0.05). Runners were consistently slower on the NMT, and as such it should not be used to measure performance over a specific distance. However, the strong correlations suggest that superior overground performance was reflected in relative terms on the NMT, and therefore, it is a valid tool for the assessment of endurance running performance in the laboratory.
The purpose of the study was to establish the reliability of performance and physiological responses during a self-paced 5 km running time trial on a non-motorized treadmill. 17 male runners (age: 32±13 years, height: 177±7 cm, body mass: 71±9 kg, sum of 7 skinfolds: 55±21 mm) performed familiarization then 2 separate maximal 5 km running time trials on a non-motorized treadmill. Physiological responses measured included heart rate, oxygen uptake, expired air volume, blood lactate concentration, tissue saturation index and integrated electromyography. Running time (1,522±163 s vs. 1,519±162 s for trials 1 and 2, respectively) demonstrated a low CV of 1.2% and high ICC of 0.99. All physiological variables had CVs of less than 4% and ICCs of >0.92, with the exception of blood lactate concentration (7.0±2 mmol·L(-1) vs. 6.5±1.5 mmol·L(-1) for trials 1 and 2, respectively; CV: 12%, ICC: 0.83) and the electromyography measures (CV: 8-27%, ICC: 0.71-0.91). The data demonstrate that performance time in a 5 km running time trial on a non-motorized treadmill is a highly reliable test. Most physiological responses measured across the 5 km run also demonstrated good reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.