A lot of technological advances depend on next-generation materials, such as graphene, which enables better electronics, to name but one example. Manufacturing such materials is often difficult, in particular, producing graphene at scale is an open problem. We apply state-of-the-art machine learning to optimize the production of laser-induced graphene, an established manufacturing method that has shown great promise. We demonstrate improvements over previous results in terms of the quality of the produced graphene from a variety of different precursor materials. We use Bayesian model-based optimization to quickly improve outcomes based on little initial data and show the robustness of our approach to different experimental conditions, tackling a small-data problem in contrast to the more common big-data applications of machine learning. We analyze the learned surrogate models with respect to the quality of their predictions and learned relationships that may be of interest to domain experts and improve our understanding of the processes governing laser-induced graphene production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.