Cerebral blood flow (CBF) is important for the maintenance of brain function and its dysregulation has been implicated in Alzheimer's disease (AD). Microglia associations with capillaries suggest they may play a role in the regulation of CBF or the bloodbrain-barrier (BBB). We explored the relationship between microglia and pericytes, a vessel-resident cell type that has a major role in the control of CBF and maintenance of the BBB, discovering a spatially distinct subset of microglia that closely associate with pericytes. We termed these pericyte-associated microglia (PEM). PEM are present throughout the brain and spinal cord in NG2DsRed  CX 3 CR1 +/GFP mice, and in the human frontal cortex. Using in vivo two-photon microscopy, we found microglia residing adjacent to pericytes at all levels of the capillary tree and found they can maintain their position for at least 28 days. PEM can associate with pericytes lacking astroglial endfeet coverage and capillary vessel width is increased beneath pericytes with or without an associated PEM, but capillary width decreases if a pericyte loses a PEM. Deletion of the microglia fractalkine receptor (CX 3 CR1) did not disrupt the association between pericytes and PEM. Finally, we found the proportion of microglia that are PEM declines in the superior frontal gyrus in AD. In summary, we identify microglia that specifically associate with pericytes and find these are reduced in number in AD, which may be a novel mechanism contributing to vascular dysfunction in neurodegenerative diseases.
Neurons live for the lifespan of the individual and underlie our ability for lifelong learning and memory. However, aging alters neuron morphology and function resulting in age-related cognitive decline. It is well established that epigenetic alterations are essential for learning and memory, yet few neuron-specific genome-wide epigenetic maps exist into old age. Comprehensive mapping of H3K4me3 and H3K27ac in mouse neurons across lifespan revealed plastic H3K4me3 marking that differentiates neuronal age linked to known characteristics of cellular and neuronal aging. We determined that neurons in old age recapitulate the H3K27ac enrichment at promoters, enhancers and super enhancers from young adult neurons, likely representing a re-activation of pathways to maintain neuronal output. Finally, this study identified new characteristics of neuronal aging, including altered rDNA regulation and epigenetic regulatory mechanisms. Collectively, these findings indicate a key role for epigenetic regulation in neurons, that is inextricably linked with aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.