BackgroundRNA-sequencing analysis is increasingly utilized to study gene expression in non-model organisms without sequenced genomes. Aethionema arabicum (Brassicaceae) exhibits seed dimorphism as a bet-hedging strategy – producing both a less dormant mucilaginous (M+) seed morph and a more dormant non-mucilaginous (NM) seed morph. Here, we compared de novo and reference-genome based transcriptome assemblies to investigate Ae. arabicum seed dimorphism and to evaluate the reference-free versus -dependent approach for identifying differentially expressed genes (DEGs).ResultsA de novo transcriptome assembly was generated using sequences from M+ and NM Ae. arabicum dry seed morphs. The transcripts of the de novo assembly contained 63.1% complete Benchmarking Universal Single-Copy Orthologs (BUSCO) compared to 90.9% for the transcripts of the reference genome. DEG detection used the strict consensus of three methods (DESeq2, edgeR and NOISeq). Only 37% of 1533 differentially expressed de novo assembled transcripts paired with 1876 genome-derived DEGs. Gene Ontology (GO) terms distinguished the seed morphs: the terms translation and nucleosome assembly were overrepresented in DEGs higher in abundance in M+ dry seeds, whereas terms related to mRNA processing and transcription were overrepresented in DEGs higher in abundance in NM dry seeds. DEGs amongst these GO terms included ribosomal proteins and histones (higher in M+), RNA polymerase II subunits and related transcription and elongation factors (higher in NM). Expression of the inferred DEGs and other genes associated with seed maturation (e.g. those encoding late embryogenesis abundant proteins and transcription factors regulating seed development and maturation such as ABI3, FUS3, LEC1 and WRI1 homologs) were put in context with Arabidopsis thaliana seed maturation and indicated that M+ seeds may desiccate and mature faster than NM. The 1901 transcriptomic DEG set GO-terms had almost 90% overlap with the 2191 genome-derived DEG GO-terms.ConclusionsWhilst there was only modest overlap of DEGs identified in reference-free versus -dependent approaches, the resulting GO analysis was concordant in both approaches. The identified differences in dry seed transcriptomes suggest mechanisms underpinning previously identified contrasts between morphology and germination behaviour of M+ and NM seeds.Electronic supplementary materialThe online version of this article (10.1186/s12864-019-5452-4) contains supplementary material, which is available to authorized users.
The developmental transition from a fertilized ovule to a dispersed diaspore (seed or fruit) involves complex differentiation processes of the ovule's integuments leading to the diversity in mature seed coat structures in angiosperms. In this study, comparative imaging and transcriptome analysis were combined to investigate the morph-specific developmental differences during outer seed coat differentiation and mucilage production in Aethionema arabicum, the Brassicaceae model for diaspore dimorphism. One of the intriguing adaptations of this species is the production and dispersal of morphologically distinct, mucilaginous and non-mucilaginous diaspores from the same plant (dimorphism). The dehiscent fruit morph programme producing multiple mucilaginous seed diaspores was used as the default trait combination, similar to Arabidopsis thaliana, and was compared with the indehiscent fruit morph programme leading to non-mucilaginous diaspores. Synchrotron-based radiation X-ray tomographic microscopy revealed a co-ordinated framework of morph-specific early changes in internal anatomy of developing A. arabicum gynoecia including seed abortion in the indehiscent programme and mucilage production by the mucilaginous seed coat. The associated comparative analysis of the gene expression patterns revealed that the unique seed coat dimorphism of Ae. arabicum provides an excellent model system for comparative study of the control of epidermal cell differentiation and mucilage biosynthesis by the mucilage transcription factor cascade and their downstream cell wall and mucilage remodelling genes. Elucidating the underlying molecular framework of the dimorphic diaspore syndrome is key to understanding differential regulation of bet-hedging survival strategies in challenging environments, timely in the face of global climatic change.
SUMMARY Aethionema arabicum is an important model plant for Brassicaceae trait evolution, particularly of seed (development, regulation, germination, dormancy) and fruit (development, dehiscence mechanisms) characters. Its genome assembly was recently improved but the gene annotation was not updated. Here, we improved the Ae. arabicum gene annotation using 294 RNA‐seq libraries and 136 307 full‐length PacBio Iso‐seq transcripts, increasing BUSCO completeness by 11.6% and featuring 5606 additional genes. Analysis of orthologs showed a lower number of genes in Ae. arabicum than in other Brassicaceae, which could be partially explained by loss of homeologs derived from the At‐α polyploidization event and by a lower occurrence of tandem duplications after divergence of Aethionema from the other Brassicaceae. Benchmarking of MADS‐box genes identified orthologs of FUL and AGL79 not found in previous versions. Analysis of full‐length transcripts related to ABA‐mediated seed dormancy discovered a conserved isoform of PIF6‐β and antisense transcripts in ABI3, ABI4 and DOG1, among other cases found of different alternative splicing between Turkey and Cyprus ecotypes. The presented data allow alternative splicing mining and proposition of numerous hypotheses to research evolution and functional genomics. Annotation data and sequences are available at the Ae. arabicum DB (https://plantcode.online.uni-marburg.de/aetar_db).
In the ‘Rocket Science’ project, storage of Eruca sativa (salad rocket) seeds for six months on board the International Space Station resulted in delayed seedling establishment. Here we investigated the physiological and molecular mechanisms underpinning the spaceflight effects on dry seeds. We found that ‘Space’ seed germination vigor was reduced, and ageing sensitivity increased, but the spaceflight did not compromise seed viability and the development of normal seedlings. Comparative analysis of the transcriptomes (using RNAseq) in dry seeds and upon controlled artificial ageing treatment (CAAT) revealed differentially expressed genes (DEGs) associated with spaceflight and ageing. DEG categories enriched by spaceflight and CAAT included transcription and translation with reduced transcript abundances for 40S and 60S ribosomal subunit genes. Among the ‘spaceflight-up’ DEGs were heat shock proteins (HSPs), DNAJ-related chaperones, a heat shock factor (HSFA7a-like), and components of several DNA repair pathways (e.g., ATM, DNA ligase 1). The ‘response to radiation’ category was especially enriched in ‘spaceflight-up’ DEGs including HSPs, catalases, and the transcription factor HY5. The major finding from the physiological and transcriptome analysis is that spaceflight causes vigor loss and partial ageing during air-dry seed storage, for which space environmental factors and consequences for seed storage during spaceflights are discussed.
The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chillinginduced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root.Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance.The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.