McIntyre Powder (MP) is a finely ground aluminum powder that was used between 1943 and 1979 as a prophylaxis for silicosis. Silicosis is a chronic lung disease caused by the inhalation of crystalline silica dust and was prevalent in the Canadian mining industry during this time period. The McIntyre Research Foundation developed, patented, and produced the MP and distributed it to licensees in Canada, the United States, Mexico, Chile, Belgian Congo, and Western Australia. In the province of Ontario, Canada it is estimated that at least 27,500 miners between 1943 and 1979 were exposed to MP. The present study was undertaken to examine the chemical and physical characteristics of two variations of MP (light grey and black). Chemical analyses (using X-ray Fluorescence and Inductively Coupled Plasma approaches) indicate that the black MP contains significantly higher concentrations of aluminum and metal impurities than the light grey MP (p < 0.001). X-ray diffractometry shows that while aluminum hydroxide dominates the aluminum speciation in both variations, the higher total aluminum content in the black MP is attributable to a greater proportion of elemental aluminum. Physical characterization (using electron microscopy, light microscopy, and dynamic light scattering) indicates that the light grey MP consists of particles ranging from 5 nm to 5 mm in diameter. Atomic Force Microscopy shows that the light grey MP particles in the nanoparticle range (<100 nm) have a mode between 5 and 10 nm. Consequently, it is possible that inhaled smaller MP nanoparticles may be transported via blood and lymph fluid circulation to many different organs including the brain. It is also possible for inhaled larger MP particles to deposit onto lung tissue and for potential health effects to arise from inflammatory responses through immune activation. This MP characterization will provide crucial data to help inform future toxicological, epidemiological, and biological studies of any long-term effects related to the inhalation of aluminum dust and nanomaterials.
Biological research conducted in deep-underground environments is limited due to the lack of scientific infrastructure to accommodate the investigations, and only a few studies have utilized complex whole organism models. In this study, lake whitefish (Coregonus clupeaformis) embryogenesis was examined in two different unique laboratory environments; at the Earth's surface and 2 km deep underground shielded from cosmic radiation. Established developmental endpoints and morphometric analysis were utilized to investigate differences between lake whitefish embryos reared in these two laboratories. No significant differences were observed between the surface and underground laboratories with respect to the timing of hatch or percent survival. However, a significant increase in body length and body weight of up to 10% was observed in embryos reared underground. These findings have been interpreted and discussed in the context of the novel research challenges faced in an inherently difficult to control deep-underground environment. This study represents one of the few investigations with an established whole organism model deep-underground and provides an opportunity to discuss the highly unique technical and logistical challenges of conducting biological experiments in this novel field of scientific research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.