Introduction Increased mortality has been demonstrated in older adults with COVID-19, but the effect of frailty has been unclear. Methods This multi-centre cohort study involved patients aged 18 years and older hospitalised with COVID-19, using routinely collected data. We used Cox regression analysis to assess the impact of age, frailty, and delirium on the risk of inpatient mortality, adjusting for sex, illness severity, inflammation, and co-morbidities. We used ordinal logistic regression analysis to assess the impact of age, Clinical Frailty Scale (CFS), and delirium on risk of increased care requirements on discharge, adjusting for the same variables. Results Data from 5,711 patients from 55 hospitals in 12 countries were included (median age 74, IQR 54–83; 55.2% male). The risk of death increased independently with increasing age (>80 vs 18–49: HR 3.57, CI 2.54–5.02), frailty (CFS 8 vs 1–3: HR 3.03, CI 2.29–4.00) inflammation, renal disease, cardiovascular disease, and cancer, but not delirium. Age, frailty (CFS 7 vs 1–3: OR 7.00, CI 5.27–9.32), delirium, dementia, and mental health diagnoses were all associated with increased risk of higher care needs on discharge. The likelihood of adverse outcomes increased across all grades of CFS from 4 to 9. Conclusions Age and frailty are independently associated with adverse outcomes in COVID-19. Risk of increased care needs was also increased in survivors of COVID-19 with frailty or older age.
ObjectiveA population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA.MethodsProduction of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity).ResultsRA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB.ConclusionsWe demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells.
Topics for DTB review articles are selected by DTB’s editorial board to provide concise overviews of medicines and other treatments to help patients get the best care. Articles include a summary of key points and a brief overview for patients. Articles may also have a series of multiple choice CME questions.
Purpose To systematically review the evidence base for the effectiveness and safety of caffeine for the treatment of neurogenic orthostatic hypotension in adults. Methods Eight electronic databases were searched in January 2021. Original research studies or case reports involving adults with neurogenic orthostatic hypotension were included if caffeine was an intervention and outcomes included symptoms, blood pressure or adverse effects. Relevant studies were screened and underwent qualitative analysis. Insufficient reporting precluded meta-analysis. Results Five studies were identified: four crossover studies and one case report summation. Study size ranged from 5 to 16 participants. Participants had neurogenic orthostatic hypotension, with a mean standing systolic blood pressure of 86 mmHg. Two studies evaluated caffeine alone. Three studies administered caffeine in combination with ergotamine. Caffeine dose ranged from 100 to 300 mg. Nature and timing of outcomes measured varied between studies, with measurements being recorded from 30 to 480 min after intervention. Caffeine/ergotamine improved symptoms in one study and reduced orthostatic blood pressure drop in two studies. Caffeine/ergotamine increased seated blood pressure in three studies, whilst the results for caffeine alone were inconsistent. No serious adverse events were reported. All studies demonstrated high risk of bias. Conclusion Caffeine should only be considered as a treatment for adults with neurogenic orthostatic hypotension when evidence-based treatments have been exhausted. Systematic review registration PROSPERO ID: CRD42020124589. Date of registration: 30/10/2020
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.