The number of installed floating offshore wind turbines (FOWTs) has doubled since 2017, quadrupling the total installed capacity, and is expected to increase significantly over the next decade. Consequently, there is a growing consideration towards the main challenges for FOWT projects: monitoring the system’s integrity, extending the lifespan of the components, and maintaining FOWTs safely at scale. Effectively and efficiently addressing these challenges would unlock the wide-scale deployment of FOWTs. In this work, we focus on one of the most critical components of the FOWTs, the Mooring Lines (MoLs), which are responsible for fixing the structure to the seabed. The primary mechanical failure mechanisms in MoLs are extreme load and fatigue, both of which are functions of the axial tension. An effective solution to detect long-term drifts in the mechanical response of the MoLs is to develop a Digital Twin (DT) able to accurately predict the behaviour of the healthy system to compare with the actual one. Moreover, we will develop another DT able to accurately predict the near future axial tension as an effective tool to improve the lifespan of the MoLs and the safety of FOWT maintenance operations. In fact, by changing the FOWT operational settings, according to the DT prediction, operators can increase the lifespan of the MoLs by reducing the stress and, additionally, in the case where FOWT operational maintenance is in progress, the prediction from the DT can serve as early safety warning to operators. Authors will leverage operational data collected from the world’s first commercial floating-wind farm [the Hywind Pilot Park (https://www.equinor.com/en/what-we-do/floating-wind/hywind-scotland.html.)] in 2018, to investigate the effectiveness of DTs for the prediction of the MoL axial tension for the two scenarios depicted above. The DTs will be developed using state-of-the-art data-driven methods, and results based on real operational data will support our proposal.
The number of installed Floating Offshore Wind Turbines (FOWTs) has doubled since 2017, quadrupling the total installed capacity, and is expected to increase significantly over the next decade. Consequently, there is a growing consideration towards the main challenges for FOWT projects: monitoring the system's integrity, extending the lifespan of the components, and maintaining FOWTs safely at scale. Effectively and efficiently addressing these challenges would unlock the wide-scale deployment of FOWTs. In this work, we focus on one of the most critical components of the FOWTs, the Mooring Lines (MoLs), which are responsible for fixing the structure to the seabed. The primary mechanical failure mechanisms in MoLs are extreme load and fatigue, both of which are functions of the axial tension. An effective solution to detect long term drifts in the mechanical response of the MoLs is to develop a Digital Twin (DT) able to accurately predict the behaviour of the healthy system to compare with the actual one. Authors will leverage operational data collected from the world's first commercial floating wind farm (Hywind Pilot Park 1 ) in 2018, to investigate the effectiveness of the DT for the prediction of the MoL axial tension. The DT will be developed using state-of-the-art data-driven methods, and results based on real operational data will support our proposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.