Introduction
Early detection of breast lesions using mammography has resulted in lower mortality-rates. However, some breast lesions are mammography occult and magnetic resonance imaging (MRI) is recommended, but has lower specificity. It is possible to achieve higher specificity by using Strain-ENCoded (SENC) MRI and/or magnetic resonance elastography(MRE). SENC breast MRI can measure the strain properties of breast tissue. Similarly, MRE is used to measure elasticity (i.e., shear stiffness) of different tissue compositions interrogating the tissue mechanical properties. Reports have shown that malignant tumors are 3–13 times stiffer than normal tissue and benign tumors.
Methods
We have developed a Strain-ENCoded (SENC) breast hardware device capable of periodically compressing the breast, thus allowing for longer scanning time and measuring the strain characteristics of breast tissue. This hardware enabled us to use SENC MRI with high spatial resolution (1×1×5mm3) instead of Fast SENC(FSENC). Simple controls and multiple safety measures were added to ensure accurate, repeatable and safe in-vivo experiments.
Results
Phantom experiments showed that SENC breast MRI has higher SNR and CNR than FSENC under different scanning resolutions. Finally, the SENC breast device reproducibility measurements resulted in a difference of less than one mm with a 1% strain difference.
Conclusion
SENC breast MR images have higher SNR and CNR than FSENC images. Thus, combining SENC breast strain measurements with diagnostic breast MRI to differentiate benign from malignant lesions could potentially increase the specificity of diagnosis in the clinical setting.
Understanding and analyzing cascading failures in power grids have been the focus of many researchers for years. However, the complex interactions among the large number of components in these systems and their contributions to cascading failures are not yet completely understood. Therefore, various techniques have been developed and used to model and analyze the underlying interactions among the components of the power grid with respect to cascading failures. Such methods are important to reveal the essential information that may not be readily available from power system physical models and topologies. In general, the influences and interactions among the components of the system may occur both locally and at distance due to the physics of electricity governing the power flow dynamics as well as other functional and cyber dependencies among the components of the system. To infer and capture such interactions, data-driven approaches or techniques based on the physics of electricity have been used to develop graph-based models of interactions among the components of the power grid. In this survey, various methods of developing interaction graphs as well as studies on the reliability and cascading failure analysis of power grids using these graphs have been reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.