Keywords: linear variable differential transformer, inductive transducer, linear range extension, binomial series, operational amplifier, analog multiplierThe linear-range extension technique for a linear variable differential transformer (LVDT) is described in this paper. Generally, the LVDT has a narrow linear operating range caused by its nonlinear transfer characteristic. To extend the linear operating range, the nonlinear behavior of the LVDT must be adjusted. In this paper, the circuit building block providing the LVDT inverse transfer characteristic using binomial series approximation is proposed for linearizing the nonlinear behavior of the LVDT. The third-order inverse transfer characteristic of the LVDT is synthesized from analog multipliers and a difference amplifier comprising an operational amplifier (opamp). All active devices used in this study are commercially available. Therefore, the attraction of the proposed technique is in the simple configuration and low cost, making it suitable for an embedded measurement system. The performance of the proposed technique is discussed in detail. Simulation and experimental results confirming the performance are also included. As a result, the linear range of the commercial LVDT used in this study can be extended more than 500%. The full scale error of the measured value is about 0.23% over the entire operating range.
In this paper, a circuit technique to extend the measuring range of a linear variable differential transformer (LVDT) is proposed. The transfer characteristic of the LVDT contains the odd function form of the cubic polynomial. Therefore, the measuring range of a commercial LVDT is linear in a narrow range compared to its physical dimensions. The wide measuring range of the LVDT requires a large structure of the LVDT, which increases the scale and the cost of the measurement system. The measuring range of the LVDT can be linearly extended to the maximum of the stroke range using the proposed technique. The realization of the proposed technique is based on the use of the hyperbolic sine (sinh) function of the electronic circuit building block, named the class AB bipolar amplifier. The class AB bipolar amplifier can be obtained by the current feedback operational amplifier (CFOA). The circuit of the proposed technique requires two CFOAs and an operational transconductance amplifier (OTA) as the active devices and all devices used in the proposed technique to synthesize the sinh function are commercially available. The proposed technique exhibits an ability to compensate for the nonlinear characteristic of the LVDT without digital components. The proposed technique is attractive in terms of its simple circuit configuration, small size, and low cost. The linear range extension of the LVDT used in this paper is significantly increased with a maximum error of about 18.3 μm of 6.2 mm at the full stroke range or the full-scale percentage error of about 0.295%. The results indicate that the proposed technique provides excellent performance to extend the measuring range of the LVDT without modifying the LVDT structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.