Numerical methods can accelerate the design of alloys with improved material properties. One approach is the coupling of multi-criteria optimization with CALPHAD-based models of alloy properties. While this technique has already yielded promising new Nickel-base superalloys, the applicability to CoNi-base alloys has not yet been investigated. These alloys show promising properties for application as wrought high-temperature materials. We designed three CoNi-base superalloys, which were optimized for either high strength or high chemical homogeneity. The alloys were cast, and mechanical and thermophysical properties were characterized. The alloy optimized for strength showed creep performance inferior to a conventionally designed CoNi-alloy but had a much lower density. For developing highly homogeneous alloys, Scheil calculations were implemented in the optimization routine to quantify the severity of segregation. Non-equilibrium phases could be predicted successfully, resulting in a degree of homogeneity that rivaled that of a low-segregation ternary Co-base alloy. A comparison of elemental partitioning behavior and phase transition temperatures with CALPHAD calculations showed that trends are well represented for the most part. Finally, the applicability of the alloy design approach for Co-rich superalloys is evaluated, and possible applications for the optimized alloys are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.