Motivated by the planarization of 2-layered straight-line drawings, we consider the problem of modifying a graph such that the resulting graph has pathwidth at most 1. The problem Pathwidth-One Vertex Explosion (POVE) asks whether such a graph can be obtained using at most k vertex explosions, where a vertex explosion replaces a vertex v by deg(v) degree-1 vertices, each incident to exactly one edge that was originally incident to v. For POVE, we give an FPT algorithm with running time O( 4k • m) and a quadratic kernel, thereby improving over the O(k 6 )-kernel by Ahmed et al. [2] in a more general setting. Similarly, a vertex split replaces a vertex v by two distinct vertices v1 and v2 and distributes the edges originally incident to v arbitrarily to v1 and v2. Analogously to POVE, we define the problem variant Pathwidth-One Vertex Splitting (POVS) that uses the split operation instead of vertex explosions. Here we obtain a linear kernel and an algorithm with running time O((6k + 12) k • m). This answers an open question by Ahmed et al. [2].Finally, we consider the problem Π Vertex Splitting (Π-VS), which generalizes the problem POVS and asks whether a given graph can be turned into a graph of a specific graph class Π using at most k vertex splits. For graph classes Π that can be tested in monadic second-order graph logic (MSO2), we show that the problem Π-VS can be expressed as an MSO2 formula, resulting in an FPT algorithm for Π-VS parameterized by k if Π additionally has bounded treewidth. We obtain the same result for the problem variant using vertex explosions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.