This study compared the muscular activation of the pectoralis major, anterior deltoid and triceps brachii during a free-weight barbell bench press performed at 0°, 30°, 45° and -15° bench angles. Fourteen healthy resistance trained males (age 21.4 ± 0.4 years) participated in this study. One set of six repetitions for each bench press conditions at 65% one repetition maximum were performed. Surface electromyography (sEMG) was utilised to examine the muscular activation of the selected muscles during the eccentric and concentric phases. In addition, each phase was subdivided into 25% contraction durations, resulting in four separate time points for comparison between bench conditions. The sEMG of upper pectoralis displayed no difference during any of the bench conditions when examining the complete concentric contraction, however differences during 26-50% contraction duration were found for both the 30° [122.5 ± 10.1% maximal voluntary isometric contraction (MVIC)] and 45° (124 ± 9.1% MVIC) bench condition, resulting in greater sEMG compared to horizontal (98.2 ± 5.4% MVIC) and -15 (96.1 ± 5.5% MVIC). The sEMG of lower pectoralis was greater during -15° (100.4 ± 5.7% MVIC), 30° (86.6 ± 4.8% MVIC) and horizontal (100.1 ± 5.2% MVIC) bench conditions compared to the 45° (71.9 ± 4.5% MVIC) for the whole concentric contraction. The results of this study support the use of a horizontal bench to achieve muscular activation of both the upper and lower heads of the pectoralis. However, a bench incline angle of 30° or 45° resulted in greater muscular activation during certain time points, suggesting that it is important to consider how muscular activation is affected at various time points when selecting bench press exercises.
This study suggests that the neuromuscular and deoxygenation (i.e., metabolic stress) responses were considerably different between LI and LI-BFR groups; however, these differences did not lead to improvements in the RBE inferred by performing LI and LI-BFR.
The purpose of the investigation was to observe how varying occlusion durations affected neuromuscular activation and microvascular oxygenation during low-volume isometric knee extension exercise. Healthy, recreationally active males performed isometric knee extension at a variety of submaximal intensities under different blood flow restriction (BFR) occlusion durations. The occlusion pressure (130% SBP) was applied either 5 min prior to exercise (PO), immediately prior to exercise (IO) or not during exercise (CON). Surface electromyography (sEMG) and near-infrared spectroscopy (NIRS) was used to record the neuromuscular activation and microvascular oxygenation of the knee extensors during exercise. No difference in sEMG was observed in the vastus lateralis or vastus medialis during any exercise condition or any submaximal intensity. PO elicited greater microvascular deoxygenation (deoxy-[Hb + Mb]) compared to CON (P≤0·05) at all submaximal intensities and also compared to IO at 20% maximal voluntary contraction (MVC). IO resulted in a greater deoxy-[Hb + Mb] response during low-intensity exercise (20% and 40% MVC) compared to CON (P≤0·05). These findings suggest that applying BFR 5 min before exercise can enhance the exercise-induced metabolic stress (i.e. deoxy-[Hb + Mb]), measured via NIRS, during low-intensity exercise (20% MVC) compared to applying BFR immediately prior to exercise. Furthermore, the increased metabolic stress observed during IO is attenuated during high-intensity (60% MVC, 80% MVC) exercise when compared to CON conditions. Knowledge of the changes in exercise-induced metabolic stress between the various occlusion durations may assist in developing efficient BFR exercise programmes.
Lauver, JD, Cayot, TE, Rotarius, TR, and Scheuermann, BW. Acute neuromuscular and microvascular responses to concentric and eccentric exercises with blood flow restriction. J Strength Cond Res 34(10): 2725–2733, 2020—The purpose of this study was to investigate the effects of the addition of blood flow restriction (BFR) during concentric and eccentric exercises on muscle excitation and microvascular oxygenation status. Subjects (N = 17) were randomly assigned to either a concentric (CON, CON + BFR) or eccentric (ECC, ECC + BFR) group, with one leg assigned to BFR and the other to non-BFR. Surface electromyography and near-infrared spectroscopy were used to measure muscle excitation and microvascular deoxygenation (deoxy-[Hb + Mb]) and [total hemoglobin concentration] during each condition, respectively. On separate days, subjects completed 4 sets (30, 15, 15, 15) of knee extension exercise at 30% maximal torque, and 1 minute of rest was provided between the sets. Greater excitation of the vastus medialis was observed during CON + BFR (54.4 ± 13.3% maximal voluntary isometric contraction [MVIC]) and ECC + BFR (53.0 ± 18.0% MVIC) compared with CON (42.0 ± 10.8% MVIC) and ECC (46.8 ± 9.6% MVIC). Change in deoxy-[Hb + Mb] was greater during CON + BFR (10.0 ± 10.4 μM) than during CON (4.1 ± 4.0 μM; p < 0.001). ECC + BFR (7.8 ± 6.7 μM) was significantly greater than ECC (3.5 ± 4.7 μM; p = 0.001). Total hemoglobin concentration was greater for ECC + BFR (7.9 ± 4.4 μM) compared with ECC (5.5 ± 3.5 μM). The addition of BFR to eccentric and concentric exercises resulted in a significant increase in metabolic stress and muscle excitation compared with non-BFR exercise. These findings suggest that although BFR may increase the hypertrophic stimulus during both modes of contraction, BFR during concentric contractions may result in a greater stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.