Motion tracking technologies and avatars in virtual reality (VR) showing the movements of the own body enable high levels of presence and a strong illusion of body ownership (IBO)-key features of immersive systems and gaming experiences in virtual environments. Previous work suggests using software-based algorithms that can not only compensate system latency but also predict future movements of the user to increase input performance. However, the effects of movement prediction in VR on input performance are largely unknown. In this paper, we investigate neural networkbased predictions of full-body avatar movements in two scenarios: In the first study, we used a standardized 2D Fitts' Law task to examine the information throughput in VR. In the second study, we utilized a full-body VR game to determine the users' performance. We found that both performance and subjective measures in a standardized 2D Fitts' law task could not benefit from the predicted avatar movements. In an immersive gaming scenario, however, the perceived accuracy of the own body location improved. Presence and body assessments remained more stable and were higher than during the Fitts' task. We conclude that machine-learning-based predictions could be used to compensate system-related latency but participants only subjectively benefit under certain conditions.
In this demo paper, we present a shoot'em up game similar to Space Invaders called the "Mood Game" that incorporates players' affective state into the game mechanics in order to enhance the gaming experience and avoid undesired emotions like frustration and boredom. By tracking emotions through facial expressions combined with self-evaluation, keystrokes and performance measures, we have developed a game logic that adapts the playing difficulty based on the player's emotional state. The implemented algorithm automatically adjusts the enemy spawn rate and enemy behavior, the amount of obstacles, the number and type of power ups and the game speed to provide a smooth game play for different player skills. The effects of our dynamic game balancing mechanism will be tested in future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.