We consider Bayesian inference techniques for Agent-Based (AB) models, as an alternative to simulated minimum distance (SMD). Three computationally heavy steps are involved:(i) simulating the model, (ii) estimating the likelihood and (iii) sampling from the posterior distribution of the parameters. Computational complexity of AB models implies that efficient techniques have to be used with respect to points (ii) and (iii), possibly involving approximations. We first discuss non-parametric (kernel density) estimation of the likelihood, coupled with Markov chain Monte Carlo sampling schemes. We then turn to parametric approximations of the likelihood, which can be derived by observing the distribution of the simulation outcomes around the statistical equilibria, or by assuming a specific form for the distribution of external deviations in the data. Finally, we introduce Approximate Bayesian Computation techniques for likelihood-free estimation. These allow embedding SMD methods in a Bayesian framework, and are particularly suited when robust estimation is needed.These techniques are first tested in a simple price discovery model with one parameter, and then employed to estimate the behavioural macroeconomic model of De Grauwe (2012), with nine unknown parameters.JEL codes: C11, C15.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Two difficulties arise in the estimation of AB models: (i) the criterion function has no simple analytical expression, (ii) the aggregate properties of the model cannot be analytically understood. In this paper we show how to circumvent these difficulties and under which conditions ergodic models can be consistently estimated by simulated minimum distance techniques, both in a long-run equilibrium and during an adjustment phase.
This paper illustrates the use of the nonparametric Wald-Wolfowitz test to detect stationarity and ergodicity in agent-based models. A nonparametric test is needed due to the practical impossibility to understand how the random component influences the emergent properties of the model in many agent-based models. Nonparametric tests on real data often lack power and this problem is addressed by applying the Wald-Wolfowitz test to the simulated data. The performance of the tests is evaluated using Monte Carlo simulations of a stochastic process with known properties. It is shown that with appropriate settings the tests can detect non-stationarity and non-ergodicity. Knowing whether a model is ergodic and stationary is essential in order to understand its behavior and the real system it is intended to represent; quantitative analysis of the artificial data helps to acquire such knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.