Sclerosing epithelioid fibrosarcoma (SEF) is a highly aggressive soft tissue sarcoma closely related to low-grade fibromyxoid sarcoma (LGFMS). Some tumors display morphologic characteristics of both SEF and LGFMS, hence they are known as hybrid SEF/LGFMS. Despite the overlap of gene fusion variants between these two tumor types, SEF is much more aggressive. The current study aimed to further characterize SEF and hybrid SEF/LGFMS genetically to better understand the role of the characteristic fusion genes and possible additional genetic alterations in tumorigenesis. We performed whole-exome sequencing, SNP array analysis, RNA sequencing (RNA-seq), global gene expression analyses, and/or IHC on a series of 13 SEFs and 6 hybrid SEF/LGFMS. We also expressed the and fusion genes conditionally in a fibroblast cell line; these cells were subsequently analyzed by RNA-seq, and expression of the CD24 protein was assessed by FACS analysis. The SNP array analysis detected a large number of structural aberrations in SEF and SEF/LGFMS, many of which were recurrent, notably microdeletions. RNA-seq identified and as alternative fusion genes in one SEF each. was strongly upregulated, presumably a direct target of the fusion proteins. This was further confirmed by the gene expression analysis and FACS analysis on Tet-On 3G cells expressing Although gene fusions are the primary tumorigenic events in both SEF and LGFMS, additional genomic changes explain the differences in aggressiveness and clinical outcome between the two types. CD24 and DMD constitute potential therapeutic targets..
Purpose: Undifferentiated pleomorphic sarcoma (UPS) is defined as a sarcoma with cellular pleomorphism and no identifiable line of differentiation. It is typically a high-grade lesion with a metastatic rate of about one third. No tumor-specific rearrangement has been identified, and genetic markers that could be used for treatment stratification are lacking. We performed transcriptome sequencing (RNA-Seq) to search for novel gene fusions.Experimental design: RNA-Seq, FISH, and/or various PCR methodologies were used to search for gene fusions and rearrangements of the PRDM10 gene in 84 soft tissue sarcomas.Results: Using RNA-Seq, two cases of UPS were found to display novel gene fusions, both involving the transcription factor PRDM10 as the 3 0 partner and either MED12 or CITED2 as the 5 0 partner gene. Further screening of 82 soft tissue sarcomas for rearrangements of the PRDM10 locus revealed one more UPS with a MED12/PRDM10 fusion. None of these genes has been implicated in neoplasia-associated gene fusions before. Conclusions: Our results suggest that PRDM10 fusions are present in around 5% of UPS. Although the fusion-positive cases in our series showed the same nuclear pleomorphism and lack of differentiation as other UPS, it is noteworthy that all three were morphologically low grade and that none of the patients developed metastases. Thus, PRDM10 fusion-positive sarcomas may constitute a clinically important subset of UPS.
Calcifying aponeurotic fibroma (CAF) is a soft tissue neoplasm with a predilection for the hands and feet in children and adolescents. Its molecular basis is unknown. We used chromosome banding analysis, fluorescence in situ hybridization (FISH), mRNA sequencing (RNA-seq), RT-PCR, and immunohistochemistry to characterize a series of CAFs. An insertion ins(2;4)(q35;q25q?) was identified in the index case. Fusion of the FN1 and EGF genes, mapping to the breakpoint regions on chromosomes 2 and 4, respectively, was detected by RNA-seq and confirmed by RT-PCR in the index case and two additional cases. FISH on five additional tumours identified FN1-EGF fusions in all cases. CAFs analysed by RT-PCR showed that FN1 exon 23, 27 or 42 was fused to EGF exon 17 or 19. High-level expression of the entire FN1 gene in CAF suggests that strong FN1 promoter activity drives inappropriate expression of the biologically active portion of EGF, which was detected immunohistochemically in 8/9 cases. The FN1-EGF fusion, which has not been observed in any other neoplasm, appears to be the main driver mutation in CAF. Although further functional studies are required to understand the exact pathogenesis of CAF, the composition of the chimera suggests an autocrine/paracrine mechanism of transformation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.