Antisense peptide nucleic acids (PNAs) inhibiting mRNAs of essential genes provide a straight-forward way to repurpose our knowledge of bacterial regulatory RNAs for development of programmable species-specific antibiotics. While there is ample proof of PNA efficacy, their target selectivity and impact on bacterial physiology are poorly understood. Moreover, while antibacterial PNAs are typically designed to block mRNA translation, effects on target mRNA levels are not well-investigated. Here, we pioneer the use of global RNA-seq analysis to decipher PNA activity in a transcriptome-wide manner. We find that PNA-based antisense oligomer conjugates robustly decrease mRNA levels of the widely-used target gene, acpP, in Salmonella enterica, with limited off-target effects. Systematic analysis of several different PNA-carrier peptides attached not only shows different bactericidal efficiency, but also activation of stress pathways. In particular, KFF-, RXR- and Tat-PNA conjugates especially induce the PhoP/Q response, whereas the latter two additionally trigger several distinct pathways. We show that constitutive activation of the PhoP/Q response can lead to Tat-PNA resistance, illustrating the utility of RNA-seq for understanding PNA antibacterial activity. In sum, our study establishes an experimental framework for the design and assessment of PNA antimicrobials in the long-term quest to use these for precision editing of microbiota.
Antisense peptide nucleic acids (PNAs) that target mRNAs of essential bacterial genes exhibit specific bactericidal effects in several microbial species, but our mechanistic understanding of PNA activity and their target gene spectrum is limited. Here, we present a systematic analysis of PNAs targeting 11 essential genes with varying expression levels in uropathogenic Escherichia coli (UPEC). We demonstrate that UPEC is susceptible to killing by peptide-conjugated PNAs, especially when targeting the widely-used essential gene acpP. Our evaluation yields three additional promising target mRNAs for effective growth inhibition, i.e.dnaB, ftsZ and rpsH. The analysis also shows that transcript abundance does not predict target vulnerability and that PNA-mediated growth inhibition is not universally associated with target mRNA depletion. Global transcriptomic analyses further reveal PNA sequence-dependent but also -independent responses, including the induction of envelope stress response pathways. Importantly, we show that 9mer PNAs are generally as effective in inhibiting bacterial growth as their 10mer counterparts. Overall, our systematic comparison of a range of PNAs targeting mRNAs of different essential genes in UPEC suggests important features for PNA design, reveals a general bacterial response to PNA conjugates and establishes the feasibility of using PNA antibacterials to combat UPEC.
Antisense peptide nucleic acids (PNAs) that target mRNAs of essential bacterial genes exhibit specific bactericidal effects in several microbial species, but our mechanistic understanding of PNA activity and their target gene spectrum is limited. Here, we present a systematic analysis of PNAs targeting eleven essential genes with varying expression levels in uropathogenic Escherichia coli (UPEC). We demonstrate that UPEC is susceptible to killing by peptide-conjugated PNAs, especially when targeting the widely-used essential gene acpP. Our evaluation yields three additional promising target mRNAs for effective growth inhibition, i.e., dnaB, ftsZ, and rpsH. The analysis also shows that transcript abundance does not predict target vulnerability and that PNA-mediated growth inhibition is not universally associated with target mRNA depletion. Global transcriptomic analyses further reveal PNA sequence-dependent but also -independent responses, including the induction of envelope stress response pathways. Importantly, we show that the growth inhibitory capacity of 9mer PNAs is generally as effective as their 10mer counterparts. Overall, our systematic comparison of a range of PNAs targeting mRNAs of different essential genes in UPEC suggests important features for PNA design, reveals a general bacterial response to PNA conjugates and establishes the feasibility of using PNA antibacterials to combat UPEC.
Antisense oligomers (ASOs) such as peptide nucleic acids (PNAs), designed to inhibit the translation of essential bacterial genes, have emerged as attractive sequence- and species- specific programmable RNA antibiotics. Yet, potential drawbacks include unwanted side effects caused by their binding to transcripts other than the intended target. To facilitate the design of PNAs with minimal off-target effects, we developed MASON (Make AntiSense Oligomers Now), a webserver for the design of PNAs that target bacterial mRNAs. MASON generates PNA sequences complementary to the translational start site of a bacterial gene of interest and reports critical sequence attributes and potential off-target sites. We based MASON's off-target predictions on experiments in which we treated Salmonella enterica serovar Typhimurium with a series of 10mer PNAs derived from a PNA targeting the essential gene acpP but carrying two serial mismatches. Growth inhibition and RNA-sequencing (RNA- seq) data revealed that PNAs with terminal mismatches are still able to target acpP, suggesting wider off-target effects than anticipated. Comparison of these results to an RNA- seq dataset from uropathogenic Escherichia coli (UPEC) treated with eleven different PNAs confirmed our findings are not unique to Salmonella. We believe that MASON's off-target assessment will improve the design of specific PNAs and other ASOs.
Ribosome profiling (Ribo-seq) is a powerful method for the transcriptome-wide assessment of protein synthesis rates and the study of translational control mechanisms. Yet, Ribo-seq also has limitations. These include difficulties with the analysis of translation-modulating molecules such as antibiotics, which are often toxic or challenging to deliver into living cells. Here, we have developed in vitro Ribo-seq (INRI-seq), a cell-free method to analyze the translational landscape of a fully customizable synthetic transcriptome. Using Escherichia coli as an example, we show how INRI-seq can be used to analyze the translation initiation sites of a transcriptome of interest. We also study the global impact of direct translation inhibition by antisense peptide nucleic acid (PNA) to analyze PNA off-target effects. Overall, INRI-seq presents a scalable, sensitive method to study translation initiation in a transcriptome-wide manner without the potentially confounding effects of extracting ribosomes from living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.