We have investigated the impact of the process parameters for the selective laser melting (SLM) of the stainless steel AISI 316L on its microstructure and mechanical properties. Properly selected SLM process parameters produce tailored material properties, by varying the laser’s power, scanning speed and beam diameter. We produced and systematically studied a matrix of samples with different porosities, microstructures, textures and mechanical properties. We identified a combination of process parameters that resulted in materials with tensile strengths up to 711 MPa, yield strengths up to 604 MPa and an elongation up to 31%, while the highest achieved hardness was 227 HV10. The correlation between the average single-cell diameter in the hierarchical structure and the laser’s input energy is systematically studied, discussed and explained. The same energy density with different SLM process parameters result in different material properties. The higher energy density of the SLM produces larger cellular structures and crystal grains. A different energy density produces different textures with only one predominant texture component, which was revealed by electron-backscatter diffraction. Furthermore, three possible explanations for the origin of the dislocations are proposed.
The impact of asymmetric cold rolling was quantitatively assessed for an industrial aluminum alloy AA 5454. The asymmetric rolling resulted in lower rolling forces and higher strains compared to conventional symmetric rolling. In order to demonstrate the positive effect on the mechanical properties with asymmetric rolling, tensile tests, plastic-strain-ratio tests and hardness measurements were conducted. The improvements to the microstructure and the texture were observed with a light and scanning electron microscope; the latter making use of electron-backscatter diffraction. The result of the asymmetric rolling was a much lower planar anisotropy and a more homogeneous metal sheet with finer grains after annealing to the soft condition. The increased isotropy of the deformed and annealed aluminum sheet is a product of the texture heterogeneity and reduced volume fractions of separate texture components.
Asymmetric rolling is a novel technique used to control both the texture and the grain refinement of metallic materials. The aim of asymmetric rolling is to apply a large shear strain uniformly through the thickness of the plate, by maintaining a high degree of friction between the sheet and the rolls. It can be used to improve the formability of material. One of the advantages of asymmetrical rolling is that the rolling force and torque can be decreased. The methods used for the asymmetric rolling are single roll drive, different work roll speeds, different work roll diameters or different lubricated work roll surfaces.
IzvlečekAsimetrično valjanje je novejša tehnika preoblikovanja, ki se uporablja za kontrolo teksture in za zmanjšanje zrnatosti valjanega materiala. Pri asimetričnem valjanju nastanejo zaradi velikega trenja na stiku valjanega materiala in valjev velike strižne deformacije po celotnem preseku valjanca. S to tehniko se lahko izboljšajo preoblikovalne lastnosti materiala. Ena od prednosti asimetričnega valjanja je tudi zmanjšanje sile in momenta valjanja. Asimetrično valjanje lahko izvajamo na naslednje načine: z le enim gnanim valjem, različnima hitrostima valjev, različnima premeroma valjev ali pa z (ne)uporabo različnih lubrikantov na površini valjev.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.