Transition-metal-containing hydrotalcites (HTc) and V(acac)3 /Cu(NO3 )2 ⋅3 H2 O (acac=acetylacetonate) mixtures were tested for their catalytic activity in the cleavage of the lignin model compound erythro-1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-l,3-propanediol (1) with molecular oxygen as oxidant. Both catalytic systems displayed high activity and good selectivity and afforded veratric acid as the main product. The catalyst behavior was studied by EPR spectroscopy, XRD, and Raman spectroscopy. After the catalysts were established for the model system, lignin depolymerization studies were performed with various organsolv and kraft lignin sources. The oxidative depolymerization and lignin bond cleavage were monitored by gel permeation chromatography (GPC), MALDI MS, and 2D-NMR (HSQC). Irrespective of the lignin pretreatment, both HTc-Cu-V and V(acac)3 /Cu(NO3 )2 ⋅3 H2 O were able to cleave the β-O-4 linkages and the resinol structures to form dimeric and trimeric products.
Ruthenium-triphos complexes exhibited unprecedented catalytic activity and selectivity in the redox-neutral C-C bond cleavage of the β-O-4 lignin linkage of 1,3-dilignol model compounds. A mechanistic pathway involving a dehydrogenation-initiated retro-aldol reaction for the C-C bond cleavage was proposed in line with experimental data and DFT calculations.
Microbial β-etherases, which selectively cleave the β-O-4 aryl ether linkage present in lignin, hold great promise for future applications in lignin valorization. However, very few members have been reported so far and little is known about these enzymes. By using a database mining approach, four novel bacterial β-etherases were identified, recombinantly produced in Escherichia coli, and investigated together with known β-etherases in the conversion of various lignin and non-lignin-type model compounds. The resulting activities revealed the significant influence of the substituents at the phenyl ring adjacent to the ether bond. Finally, β-etherase activity on polymeric substrates, measured by using a fluorescently labeled synthetic lignin, was also proven; this underlined the applicability of the enzymes for the conversion of lignin into renewable chemicals.
A gram-scale synthetic access to diastereomerically pure dilignol β-O-4 type model compounds, which represent valuable candidates for studies of lignin cleavage and valorization, is described. Following a straightforward procedure both diastereoisomers of 1,3-dilignols can be prepared. In the key-step, tert-butyl aryloxy esters are used as enolate precursors for additions on aldehydes. After separation, the resulting erythro and threo β-hydroxy esters are independently reduced to afford the target compounds in high yields.
Simple FeCl 3 -derived iron catalysts are used for the cleavage of β-O-4 linkages in lignin and lignin model compounds. The degradation of the β-O-4 linkages and the resinol structures in both organosolv and kraft lignin was proven by 2D-NMR (HSQC) experiments, and the oxidative depolymerisation of these lignin sources was confirmed by GPC. Key reactive species facilitating this cleavage are methyl radicals generated from H 2 O 2 and DMSO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.