The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from the excited H2O to its water neighbors, which occurs on a sub-100 fs time scale, to be followed in molecular detail, i.e., to determine which water molecules receive the energy and in which degrees of freedom. It is found that the dominant energy flow is to the four hydrogen-bonded water partners in the first hydration shell, dominated by those partners' rotational motion, in a fairly symmetric fashion over the hydration shell. The minority component of the energy transfer, to these neighboring waters' translational motion, exhibits an asymmetry in energy reception between hydrogen-bond-donating and -accepting water molecules. The variation of the energy flow characteristics with rotational axis, initial rotational energy excitation magnitude, method of excitation, and temperature is discussed. Finally, the relation of the nonequilibrium results to equilibrium time correlations is investigated.
Molecules are often born with high energy and large-amplitude vibrations. In solution, a newly formed molecule cools down by transferring energy to the surrounding solvent molecules. The progression of the molecular and solute-solvent cage structure during this fundamental process has been elusive, and spectroscopic data generally do not provide such structural information. Here, we use picosecond X-ray liquidography (solution scattering) to visualize time-dependent structural changes associated with the vibrational relaxation of I(2) molecules in two different solvents, CCl(4) and cyclohexane. The birth and vibrational relaxation of I(2) molecules and the associated rearrangement of solvent molecules are mapped out in the form of a temporally varying interatomic distance distribution. The I-I distance increases up to ~4 Å and returns to the equilibrium distance (2.67 Å) in the ground state, and the first solvation cage expands by ~1.5 Å along the I-I axis and then shrinks back accompanying the structural change of the I(2) molecule.
The vibronic absorption spectrum of the electric dipole forbidden and vibronically allowed S( A) ← S( A) transition of formaldehyde is calculated by Gaussian wavepacket and semiclassical methods, along with numerically exact reference calculations, using the potential energy surface of Fu, Shepler, and Bowman ( J. Am. Chem. Soc. 2011, 133, 7957). Specifically, the variational multiconfigurational Gaussian (vMCG) approach and the Herman-Kluk semiclassical initial value representation (HK-SCIVR) are compared to assess the accuracy and convergence of these methods, benchmarked against numerically exact time-dependent wavepacket propagation (TDWP) on the reference potential energy surface. The vMCG calculation is shown to converge quite well with about 100 variationally evolving Gaussian functions and using a local cubic expansion instead of the conventional local harmonic approximation. By contrast, the HK-SCIVR approach with ∼10 trajectories reproduces the vibrationally structured spectral envelope correctly but yields a strongly broadened spectrum. The comparison of the computed absorption spectrum with experiment shows that the relevant vibronic progressions are reasonably reproduced by all computations, but deviations of the order of 10-100 cm occur, underscoring that both electronic structure calculations and dynamical approaches remain challenging in the calculation of typical small-molecule excited-state spectra by trajectory-based methods.
Attosecond ionization experiments have not resolved the question "What is the tunneling time?". Different definitions of tunneling time lead to different results. Second, a zero tunneling time for a material particle suggests that the nonrelativistic theory includes speeds greater than the speed of light. Chemical reactions, occurring via tunneling, should then not be considered in terms of a nonrelativistic quantum theory calling into question quantum dynamics computations on tunneling reactions. To answer these questions, we define a new experimentally measurable paradigm, the tunneling flight time, and show that it vanishes for scattering through an Eckart or a square barrier, irrespective of barrier length or height, generalizing the Hartman effect. We explain why this result does not lead to experimental measurement of speeds greater than the speed of light. We show that this tunneling is an incoherent process by comparing a classical Wigner theory with exact quantum mechanical computations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.