This journal paper introduces a charge-based approach for the calculation of charges and capacitances in staggered organic thin-film transistors (OTFTs). Based on an already existing DC model, the charges are yielded in an analytical and compact form. A linear charge partitioning scheme is applied to ascribe charges to the drain/source side of the channel. The final equation is only dependent on geometrical parameters and the charge densities at the drain/source end of the channel. Furthermore, the fringing regions in fabricated devices are taken into account. The compact model is implemented in Verilog-A and the capacitances are compared to Sentaurus TCAD simulation results as well as measurement data. Additionally, simulation results for a differential amplifier are compared to measurements. The advantage of this model is its unique formulation covering all operation regimes. INDEX TERMS Capacitance, charge-based model, compact modeling, OTFT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.