Automated decision systems (ADS) are increasingly used for consequential decision-making. These systems often rely on sophisticated yet opaque machine learning models, which do not allow for understanding how a given decision was arrived at. In this work, we conduct a human subject study to assess people's perceptions of informational fairness (i.e., whether people think they are given adequate information on and explanation of the process and its outcomes) and trustworthiness of an underlying ADS when provided with varying types of information about the system. More specifically, we instantiate an ADS in the area of automated loan approval and generate different explanations that are commonly used in the literature. We randomize the amount of information that study participants get to see by providing certain groups of people with the same explanations as others plus additional explanations. From our quantitative analyses, we observe that different amounts of information as well as people's (self-assessed) AI literacy significantly influence the perceived informational fairness, which, in turn, positively relates to perceived trustworthiness of the ADS. A comprehensive analysis of qualitative feedback sheds light on people's desiderata for explanations, among which are (i) consistency (both with people's expectations and across different explanations), (ii) disclosure of monotonic relationships between features and outcome, and (iii) actionability of recommendations.
CCS CONCEPTS• Human-centered computing → Human computer interaction (HCI); • Computing methodologies → Machine learning; • Information systems → Decision support systems.
It is often argued that one goal of explaining automated decision systems (ADS) is to facilitate positive perceptions (e.g., fairness or trustworthiness) of users towards such systems. This viewpoint, however, makes the implicit assumption that a given ADS is fair and trustworthy, to begin with. If the ADS issues unfair outcomes, then one might expect that explanations regarding the system's workings will reveal its shortcomings and, hence, lead to a decrease in fairness perceptions. Consequently, we suggest that it is more meaningful to evaluate explanations against their effectiveness in enabling people to appropriately assess the quality (e.g., fairness) of an associated ADS. We argue that for an effective explanation, perceptions of fairness should increase if and only if the underlying ADS is fair. In this in-progress work, we introduce the desideratum of appropriate fairness perceptions, propose a novel study design for evaluating it, and outline next steps towards a comprehensive experiment.
CCS CONCEPTS• Human-centered computing → Human computer interaction (HCI).
Automated decision systems (ADS) have become ubiquitous in many high-stakes domains. Those systems typically involve sophisticated yet opaque artificial intelligence (AI) techniques that seldom allow for full comprehension of their inner workings, particularly for affected individuals.As a result, ADS are prone to deficient oversight and calibration, which can lead to undesirable (e.g., unfair) outcomes. In this work, we conduct an online study with 200 participants to examine people's perceptions of fairness and trustworthiness towards ADS in comparison to a scenario where a human instead of an ADS makes a high-stakes decision-and we provide thorough identical explanations regarding decisions in both cases. Surprisingly, we find that people perceive ADS as fairer than human decision-makers. Our analyses also suggest that people's AI literacy affects their perceptions, indicating that people with higher AI literacy favor ADS more strongly over human decision-makers, whereas low-AI-literacy people exhibit no significant differences in their perceptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.