BackgroundSevere and fatal vivax malaria is increasingly reported from India. In Mangaluru, southern India, malaria is focused in urban areas and associated with importation by migrant workers. In Wenlock Hospital, the largest governmental hospital, the clinical, parasitological and biochemical characteristics of malaria patients were assessed.MethodsDuring the peak malaria season in 2015 (June to December), outpatients were interviewed and clinically assessed. Malaria was ascertained by microscopy and PCR assays, concentrations of haemoglobin, creatinine and bilirubin, as well as thrombocyte count, were determined, and severe malaria was defined according to WHO criteria.ResultsAmong 909 malaria patients, the vast majority was male (93%), adult (median, 26 years) and of low socio-economic status. Roughly half of them were migrants from beyond the local Karnataka state, mostly from northern and northeastern states. Vivax malaria (69.6%) predominated over mixed Plasmodium vivax–Plasmodium falciparum infection (21.3%) and falciparum malaria (9.0%). The geometric mean parasite density was 3412/µL. As compared to vivax malaria, patients with falciparum malaria had higher parasite density and more frequently showed impaired general condition, affected consciousness and splenomegaly. Also, they tended to more commonly have anaemia and increased creatinine levels, and to be hospitalized (7.3%). Mixed-species infections largely assumed an interim position. Severe malaria (3.5%) was not associated with parasite species. No fatality occurred.ConclusionIn this study, uncomplicated cases of malaria predominated, with P. falciparum causing slightly more intense manifestation. Severe malaria was infrequent and fatalities absent. This contrasts with the reported pattern of manifestation in other parts of India, which requires the analysis of underlying causes.
Background Duffy blood group antigens serve as receptors for Plasmodium vivax invasion into erythrocytes, and they are determined by polymorphisms of the Duffy antigen receptor for chemokines (DARC), also known as Fy glycoprotein (FY). Duffy negativity, i.e., absence of the antigens, protects against P. vivax infection and is rare among non-African populations. However, data on DARC polymorphisms and their impact on Plasmodium infection in India are scarce. Methods In a case–control study among 909 malaria patients and 909 healthy community controls in Mangaluru, southwestern India, DARC polymorphisms T-33C (rs2814778), G125A (rs12075), C265T (rs34599082), and G298A (rs13962) were genotyped. Associations of the polymorphisms with the odds of malaria, parasite species and manifestation were assessed. Results Among patients, vivax malaria (70%) predominated over falciparum malaria (9%) and mixed species infections (21%). DARC T-33C was absent and C265T was rare (1%). FYB carriage (deduced from DARC G125A) was not associated with the risk of malaria per se but it protected against severe falciparum malaria (P = 0.03), and hospitalization (P = 0.006) due to falciparum malaria. Vice versa, carriage of DARC 298A was associated with increased odds of malaria (aOR, 1.46 (1.07–1.99), P = 0.015) and vivax malaria (aOR, 1.60 (1.14–2.22), P = 0.006) and with several reported symptoms and findings of the patients. Conclusion This report from southern India is the first to show an independent effect of the DARC 298A polymorphism on the risk of malaria. Functional studies are required to understand the underlying mechanism. Moreover, FYB carriage appears to protect against severe falciparum malaria in southern India.
In most of India, sulfadoxine-pyrimethamine (SP) plus artesunate serves as first-line treatment for uncomplicated falciparum malaria. In 112 clinical Plasmodium falciparum isolates from Mangaluru, southwestern India, we sequenced molecular markers associated with resistance to SP, lumefantrine, and artemisinin (pfdhfr, pfdhps, pfmdr1, and K13). The pfdhfr double mutation 59R-108N combined with the dhps 437G mutation occurred in 39.3% and the pfdhfr double mutation plus the pfdhps double mutation 437G-540E in additional 24.1%. As for pfmdr1, the allele combination N86-184F-D1246 dominated (98.2%). K13 variants were absent. No evidence for artemisinin resistance was seen. However, the antifolate resistance alleles compromise the current first-line antimalarial sulfadoxine-pyrimethamine plus artesunate, which may facilitate the emergence of artemisinin resistance. Artemether-lumefantrine, introduced in northeastern parts of the country, in the study area faces the predominant pfmdr1 NFD genotype, known to impair lumefantrine efficacy. Further monitoring of resistance alleles and treatment trials on alternative artemisinin-based combination therapies are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.