Combining Positron Emission Tomography (PET) with Magnetic Resonance Imaging (MRI) results in a promising hybrid molecular imaging modality as it unifies the high sensitivity of PET for molecular and cellular processes with the functional and anatomical information from MRI. Digital Silicon Photomultipliers (dSiPMs) are the digital evolution in scintillation light detector technology and promise high PET SNR. DSiPMs from Philips Digital Photon Counting (PDPC) were used to develop a preclinical PET/RF gantry with 1-mm scintillation crystal pitch as an insert for clinical MRI scanners. With three exchangeable RF coils, the hybrid field of view has a maximum size of 160 mm × 96.6 mm (transaxial × axial). 0.1 ppm volume-root-mean-square B 0-homogeneity is kept within a spherical diameter of 96 mm (automatic volume shimming). Depending on the coil, MRI SNR is decreased by 13% or 5% by the PET system. PET count rates, energy resolution of 12.6% FWHM, and spatial resolution of 0.73 mm (3) (isometric volume resolution at isocenter) are not affected by applied MRI sequences. PET time resolution of 565 ps (FWHM) degraded by 6 ps during an EPI sequence. Timing-optimized settings yielded 260 ps time resolution. PET and MR images of a hot-rod phantom show no visible differences when the other modality was in operation and both resolve 0.8-mm rods. Versatility of the insert is shown by successfully combining multi-nuclei MRI ((1)H/(19)F) with simultaneously measured PET ((18)F-FDG). A longitudinal study of a tumor-bearing mouse verifies the operability, stability, and in vivo capabilities of the system. Cardiac- and respiratory-gated PET/MRI motion-capturing (CINE) images of the mouse heart demonstrate the advantage of simultaneous acquisition for temporal and spatial image registration.
PET (positron emission tomography) with its high sensitivity in combination with MRI (magnetic resonance imaging) providing anatomic information with good soft-tissue contrast is considered to be a promising hybrid imaging modality. However, the integration of a PET detector into an MRI system is a challenging task since the MRI system is a sensitive device for external disturbances and provides a harsh environment for electronic devices. Consequently, the PET detector has to be transparent for the MRI system and insensitive to electromagnetic disturbances. Due to the variety of MRI protocols imposing a wide range of requirements regarding the MR-compatibility, an extensive study is mandatory to reliably assess worst-case interference phenomena between the PET detector and the MRI scanner. We have built the first preclinical PET insert, designed for a clinical 3 T MRI, using digital silicon photomultipliers (digital SiPM, type DPC 3200-22, Philips Digital Photon Counting). Since no thorough interference investigation with this new digital sensor has been reported so far, we present in this work such a comprehensive MR-compatibility study. Acceptable distortion of the B0 field homogeneity (volume RMS = 0.08 ppm, peak-to-peak value = 0.71 ppm) has been found for the PET detector installed. The signal-to-noise ratio degradation stays between 2-15% for activities up to 21 MBq. Ghosting artifacts were only found for demanding EPI (echo planar imaging) sequences with read-out gradients in Z direction caused by additional eddy currents originated from the PET detector. On the PET side, interference mainly between the gradient system and the PET detector occurred: extreme gradient tests were executed using synthetic sequences with triangular pulse shape and maximum slew rate. Under this condition, a relative degradation of the energy (⩽10%) and timing (⩽15%) resolution was noticed. However, barely measurable performance deterioration occurred when morphological MRI protocols are conducted certifying that the overall PET performance parameters remain unharmed.
In this work, we present an initial MR-compatibility study performed with the world's first preclinical PET/MR insert based on fully digital silicon photo multipliers (dSiPM). The PET insert allows simultaneous data acquisition of both imaging modalities and thus enables the true potential of hybrid PET/MRI. Since the PET insert has the potential to interfere with all of the MRI's subsystems (strong magnet, gradients system, radio frequency (RF) system) and vice versa, interference studies on both imaging systems are of great importance to ensure an undisturbed operation. As a starting point to understand the interference, we performed signal-to-noise ratio (SNR) measurements as well as dedicated noise scans on the MRI side to characterize the influence of the PET electronics on the MR receive chain. Furthermore, improvements of sub-components’ shielding of the PET system are implemented and tested inside the MRI. To study the influence of the MRI on the PET performance, we conducted highly demanding stress tests with gradient and RF dominated MR sequences. These stress tests unveil a sensitivity of the PET's electronics to gradient switching.
The combination of Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) into a single device is being considered a promising tool for molecular imaging as it combines the high sensitivity of PET with the functional and anatomical images of MRI. For highest performance, a scalable, MR compatible detector architecture with a small form factor is needed, targeting at excellent PET signal-to-noise ratios and time-of-flight information. Therefore it is desirable to use silicon photo multipliers and to digitize their signals directly in the detector modules inside the MRI bore. A preclinical PET/RF insert for clinical MRI scanner was built to demonstrate a new architecture and to study the interactions between the two modalities.The disturbance of the MRI's static magnetic field stays below 2 ppm peak-to-peak within a diameter of 56 mm (90 mm using standard automatic volume shimming). MRI SNR is decreased by 14%, RF artefacts (dotted lines) are only visible in sequences with very low SNR. Ghosting artefacts are visible to the eye in about 26% of the EPI images, severe ghosting only in 7.6%. Eddy-current related heating effects during long EPI sequences are noticeable but with low influence of 2% on the coincidences count rate. The time resolution of 2.5 ns, the energy resolution of 29.7% and the volumetric spatial resolution of 1.8 mm(3) in the PET isocentre stay unaffected during MRI operation. Phantom studies show no signs of other artefacts or distortion in both modalities. A living rat was simultaneously imaged after the injection with (18)F-Fluorodeoxyglucose (FDG) proving the in vivo capabilities of the system.
Hyperion-IID is a positron emission tomography (PET) insert which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. To read out the scintillation light of the employed lutetium yttrium orthosilicate crystal arrays with a pitch of 1 mm and 12 mm in height, digital silicon photomultipliers (DPC 3200-22, Philips Digital Photon Counting) (DPC) are used. The basic PET performance in terms of energy resolution, coincidence resolution time (CRT) and sensitivity as a function of the operating parameters, such as the operating temperature, the applied overvoltage, activity and configuration parameters of the DPCs, has been evaluated at system level. The measured energy resolution did not show a large dependency on the selected parameters and is in the range of 12.4%–12.9% for low activity, degrading to ~13.6% at an activity of ~100 MBq. The CRT strongly depends on the selected trigger scheme (trig) of the DPCs, and we measured approximately 260 ps, 440 ps, 550 ps and 1300 ps for trig 1–4, respectively. The trues sensitivity for a NEMA NU 4 mouse-sized scatter phantom with a 70 mm long tube of activity was dependent on the operating parameters and was determined to be 0.4%–1.4% at low activity. The random fraction stayed below 5% at activity up to 100 MBq and the scatter fraction was evaluated as ~6% for an energy window of 411 keV–561 keV and ~16% for 250 keV–625 keV. Furthermore, we performed imaging experiments using a mouse-sized hot-rod phantom and a large rabbit-sized phantom. In 2D slices of the reconstructed mouse-sized hot-rod phantom (∅ = 28 mm), the rods were distinguishable from each other down to a rod size of 0.8 mm. There was no benefit from the better CRT of trig 1 over trig 3, where in the larger rabbitsized phantom (∅ = 114 mm) we were able to show a clear improvement in image quality using the time-of-flight information. The findings will allow system architects—aiming at a similar detector design using DPCs—to make predictions about the design requirements and the performance that can be expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.