The physiological activity of dopaminergic midbrain (DA) neurons is important for movement, cognition, and reward. Altered activity of DA neurons is a key finding in schizophrenia, but the cellular mechanisms have not been identified. Recently, KCNN3, a gene that encodes a member (SK3) of the smallconductance, calcium-activated potassium (SK) channels, has been proposed as a candidate gene for schizophrenia. However, the functional role of SK3 channels in DA neurons is unclear. We combined patch-clamp recordings with single-cell RT-PCR and confocal immunohistochemistry in mouse midbrain slices to study the function of molecularly defined SK channels in DA neurons. Biophysical and pharmacological analysis, single-cell mRNA, and protein expression profiling strongly suggest that SK3 channels mediate the calciumdependent afterhyperpolarization in DA neurons. Perforated patch recordings of DA neurons in the substantia nigra (SN) demonstrated that SK3 channels dynamically control the frequency of spontaneous firing. In addition, SK3 channel activity was essential to maintain the high precision of the intrinsic pacemaker of DA SN neurons. In contrast, in the ventral tegmental area, DA neurons displayed significantly smaller SK currents and lower SK3 protein expression. In these DA neurons, SK3 channels were not involved in pacemaker control. Accordingly, they discharged in a more irregular manner compared with DA SN neurons. Thus, our study shows that differential SK3 channel expression is a critical molecular mechanism in DA neurons to control neuronal activity. This provides a cellular framework to understand the functional consequences of altered SK3 expression, a candidate disease mechanism for schizophrenia.
Dopaminergic midbrain (DA) neurons display two principal activity patterns in vivo, single-spike and burst firing, the latter coding for reward-related events. We have shown recently that the small-conductance calcium-activated potassium channel SK3 controls pacemaker frequency and precision in DA neurons of the substantia nigra (SN), and previous studies have implicated SK channels in the transition to burst firing. To identify the upstream calcium sources for SK channel activation in DA SN neurons, we studied the sensitivity of SK channel-mediated afterhyperpolarization (AHP) currents to inhibitors of different types of voltage-gated calcium channels in perforated patch-clamp recordings. Cobalt-sensitive AHP currents were not affected by L-type and P/Q-type calcium channel inhibitors and were reduced slightly (26%) by the N-type channel inhibitor omega-conotoxin-GVIA. In contrast, AHP currents were blocked substantially (85-94%) by micromolar concentrations of nickel (IC50, 33.75 microm) and mibefradil (IC50, 4.83 microm), indistinguishable from the nickel and mibefradil sensitivities of T-type calcium currents (IC50 values, 33.86 and 4.59 microm, respectively). These results indicate that SK channels are activated selectively via T-type calcium channels in DA SN neurons. Consequently, SK currents displayed use-dependent inactivation with similar time constants when compared with those of T-type calcium currents and generated a transient rebound inhibition. Both SK and T-type channels were essential for the stability of spontaneous pacemaker activity, and, in some DA SN neurons, T-type channel inhibition was sufficient to induce intrinsic burst firing. The functional coupling of SK to T-type channels has important implications for the temporal integration of synaptic input and might help to understand how DA neurons switch between pacemaker and burst-firing modes in vivo.
Characterizing the responsiveness of thalamic neurons is crucial to understanding the flow of sensory information. Typically, thalamocortical neurons possess two distinct firing modes. At depolarized membrane potentials, thalamic cells fire single action potentials and faithfully relay synaptic inputs to the cortex. At hyperpolarized potentials, the activation of T-type calcium channels promotes burst firing, and the transfer is less accurate. Our results suggest that this duality no longer holds if synaptic background activity is taken into account. By injecting stochastic conductances into guinea-pig thalamocortical neurons in slices, we show that the transfer function of these neurons is strongly influenced by conductance noise. The combination of synaptic noise with intrinsic properties gives a global responsiveness that is more linear, mixing single-spike and burst responses at all membrane potentials. Because in thalamic neurons, background synaptic input originates mainly from cortex, these results support a determinant role of corticothalamic feedback during sensory information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.