A concept of a planar modular mechanical metamaterial inspired by the principle of local adaptivity is proposed. The metamaterial consists of identical pieces similar to jigsaw puzzle tiles. Their rotation within assembly provides a substantial flexibility in terms of structural behavior, whereas mechanical interlocks enable reassembly. The tile design with a diagonal elliptical opening allows us to vary elastic properties from stiff to compliant, with positive, zero, or negative Poisson's ratio. The outcomes of experimental testing on additively manufactured specimens confirm that the assembly properties can be accurately designed using optimization approaches with finite element analysis at heart.
Architectural conservation and repair are becoming increasingly important issues in many countries due to numerous prior improper interventions, including the use of inappropriate repair materials over time. As a result, the composition of repair masonry mortars is now being more frequently addressed in mortar research. Just recently, for example, it has become apparent that Portland cement mortars, extensively exploited as repair mortars over the past few decades, are not suitable for repair because of their chemical, physical, mechanical, and aesthetic incompatibilities with original materials. This paper focuses on the performance of various lime-based alternative materials intended for application in repairing historic structures when subjected to mechanical loading. Results of basic material tests indicate that the use of metakaolin as a pozzolanic additive produces mortars with superior strength and sufficiently low shrinkage. Moreover, mortar strength can be further enhanced by the addition of crushed brick fragments, which explains the longevity of Roman concretes rich in pozzolans and aggregates from crushed clay products such as tiles, pottery, or bricks. An integrated experimentalnumerical approach was used to identify key mortar parameters influencing the load-bearing capacity of masonry piers subjected to a combination of compression and bending. The simulations indicate increased load-bearing capacities for masonry piers containing metakaolin-rich mortars with crushed brick fragments, as a result of their superior compressive strength.
Tungsten-based materials are the most prospective candidates for plasma-facing components of future fusion devices, such as DEMO. W-based composites and graded layers can serve as stress-relieving interlayers for the joints between plasma-facing armor and the cooling or structural parts. Coating/cladding techniques offer the advantages of eliminating the joining step and the ability to coat large areas, even on nonplanar shapes. In this work, W + Cu and W + Ni composites were prepared by pulsed plasma transferred arc (PTA) cladding on several different substrates. Optimization of the process was carried out with respect to powder mixture composition and process parameters like arc current, plasma gas composition, and traverse velocity. Dense claddings of several millimeters thickness and various W content were achieved. Moreover, multilayers with W content gradually varying from 47 to 92% were formed. The structure, compositional profiles, and thermal properties of the claddings were characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.