One of the central concepts in the principles of Industry 4.0 relates to the methodology for designing and implementing the digital shell of the manufacturing process components. This concept, the Asset Administration Shell (AAS), embodies a systematically formed, standardized data envelope of a concrete component within Industry 4.0. The paper discusses the AAS in terms of its structure, its components, the sub-models that form a substantial part of the shell’s content, and its communication protocols (Open Platform Communication—Unified Architecture (OPC UA) and MQTT) or SW interfaces enabling vertical and horizontal communication to involve other components and levels of management systems. Using a case study of a virtual assembly line that integrates AASs into the technological process, the authors present a comprehensive analysis centered on forming AASs for individual components. In the given context, the manual AAS creation mode exploiting framework-based automated generation, which forms the AAS via a configuration wizard, is assessed. Another outcome consists of the activation of a virtual assembly line connected to real AASs, a step that allows us verify the properties of the distributed manufacturing management. Moreover, a discrete event system was modeled for the case study, enabling the effective application of the Industry 4.0 solution.
The paper discusses the possibilities of incorporating sensors and indicators into the environment of an Industry 4.0 digital factory. The concept of Industry 4.0 (I4.0) is characterized via a brief description of the RAMI 4.0 and I4.0 component model. In this context, the article outlines the structure of an I4.0 production component, interpreting such an item as a body integrating the asset and its electronic form, namely, the Asset Administration Shell (AAS). The formation of the AAS sub-models from the perspectives of identification, communication, configuration, safety, and condition monitoring is also described to complete the main analysis. Importantly, the authors utilize concrete use cases to demonstrate the roles of the given I4.0 component model and relevant SW technologies in creating the AAS. In this context, the use cases embody applications where an operator wearing a SmartJacket equipped with sensors and indicators ensures systematic data collection by passing through the manufacturing process. The set of collected information then enables the operator and the system server to monitor and intervene in the production cycle. The advantages and disadvantages of the individual scenarios are summarized to support relevant analysis of the entire problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.