Woody encroachment is ubiquitous in grassy ecosystems worldwide, but its global impacts on the diversity of herbaceous plants that characterise and define these ecosystems remain unquantified. The pervasiveness of encroachment is relatively easily observed via remote sensing, but its impacts on plant diversity and richness below the canopy can only be observed via field‐based studies. Via a meta‐analysis of 42 field studies across tropical to temperate grassy ecosystems, we quantified how encroachment altered herbaceous species richness, and the richness of forbs, C3 graminoids and C4 graminoids. Across studies, the natural logarithm of the response ratio (lnRR) of herbaceous species richness ranged from −3.33 to 0.34 with 87% of encroached ecosystems negatively impacted. Assessment of the extent of encroachment, duration of encroachment, mean annual rainfall, latitude, and continent demonstrated that only extent of encroachment had relevance in the data (univariate model including a random effect of study explained 45.4% of variance). The global weighted mean lnRR of species richness decreased from −0.245 at <33% of woody cover increase, to −0.562 at 33%–66%, and to −0.962 at >66%. Continued encroachment results in substantial loss of herbaceous diversity at medium and high extents, with a loss of richness that is not replaced. Although all functional groups are significantly negatively impacted by encroachment, forb richness is relatively more sensitive than graminoid richness, and C4 graminoid richness relatively more than C3 graminoid richness. Although no geographic or climatic correlates had relevance in the data, encroachment as an emergent product of global change coalesces to decrease ground layer light availability, lead to loss of fire and grazers, and alter hydrology and soils. Encroachment is accelerating and grassy ecosystems require urgent attention to determine critical woody cover thresholds that facilitate diverse and resilient grassy ecosystems.
Grassy biomes span more than 40% of the global land surface and are central to people, biodiversity and Earth System functioning. There is however limited standardised measurement of herbaceous taxonomic and functional composition in grassy biomes that inhibits the development of a comparative understanding of grassy biomes among geographic regions. Here, we present a protocol for the measurement of herbaceous richness and composition to motivate for much needed data standardisation in the measurement of grassy biomes. The data collection protocol and associated data management system are designed to have utility for fields of research ranging from phylogenetics and taxonomy to functional, community and ecosystem ecology. The described data collection protocol links to a data management system designed to foster collaboration and equity among biologists and ecologists working on herbaceous plants and grassy biomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.