Current challenges in the areas of health care, environmental protection, and, especially, the mobility transition have introduced a wide range of applications for specialized high-performance materials. Hence, this paper presents a novel approach for designing materials with flame spray pyrolysis on a lab scale and transferring the synthesis to the pulsation reactor for mass production while preserving the advantageous material properties of small particle sizes and highly specific surface areas. A proof of concept is delivered for zirconia and silica via empirical studies. Furthermore, an interdisciplinary approach is introduced to model the processes in a pulsation reactor in general and for single material particles specifically. Finally, facilities for laboratory investigations and pulsation reactor testing in an industrial environment are presented.
Material treatment in pulsation reactors (PR) brings the possibility of synthesizing powdery products with advantageous properties, such as nanoparticle sizes and high specific surface areas, at an industrial scale. The extraordinary material properties can be ascribed to special process parameters in a PR, primarily the periodically varying conditions and the consequently enhanced heat and mass transfer between the medium and the particles of the material. Understanding the connections between the PR operation parameters, such as fuel and air intake or PR geometry, and the resulting process parameters (temperature distribution, flow velocity and pressure field, and frequency of the pulsations) is essential to enabling a controllable treatment process. Despite the long history of pulsation reactor technology, many connections and dependencies remain unclear. Thus, the influence of the fuel (and air) supply on the pulsation reactor behavior is experimentally examined in this study. The investigated PR characteristics and process parameters are primarily those that have an impact on the heat and mass transfer, i.e., the temperature distribution, flow velocity, and pressure field, and frequency of the pulsations. In addition to these, the harmonic distortion of the oscillations and the heat losses are evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.