The aim of this manuscript was to study the influence of alloying elements on the phase transformation behavior in advanced high-strength multiphase steels. Continuous cooling transformation (CCT) and time–temperature–transformation (TTT) diagrams were calculated to analyze the stability of phases at variable time–temperature processing parameters. The analyzed materials were lean-alloyed transformation induced plasticity (TRIP) medium manganese steels. The simulations of the phase diagrams, the stability of the phases during simulated heat treatments, and the chemical composition evolution diagrams were made using Thermo-Calc and JMatPro material simulation softwares. The influence of alloying elements, i.e., Mn and C, were studied in detail. The computational and modelling results allowed the influence of alloying elements on equilibrium and non-equilibrium phase diagrams and microstructural and chemical composition evolutions to be studied. Good symmetry and correlation between computational softwares were achieved. The study allows for future optimization of the heat-treatment temperature and time conditions of modern medium-Mn automotive sheet steels.
The strain-aging of low alloyed, multiphase high-strength steels with strain-induced austenite to martensite transformation was studied. The influence of prestrain, aging time, and temperature dependence of the static strain aging was carried out. Ageing temperatures between 60 and 220 ∘ C and aging times from 20 to 10,000 min were investigated. The choice of steel composition allowed studying the influence of alloying elements, such as Si and Al, on the static strain aging behavior. Samples after aging were studied using light-optical microscopy, X-ray diffraction, and in-depth transmission electron microscopy (TEM). The Harper model was used to describe the precipitation mechanisms occurring during aging. The study of thin foils after aging using TEM showed the precipitation of low temperature transition carbides in the microstructure, which was observed between 60 and 5000 min. By using X-ray diffraction, it was revealed that aging at 170 ∘ C for a long time caused a slight decrease of the retained austenite volume fraction, but the C content remained constant.
Post-irradiation annealing of neutron-irradiated reactor pressure vessel steels is a matter of both technical and scientific interest. Small-angle neutron scattering (SANS), while being sensitive to nm-sized irradiation-induced solute-atom clusters, provides macroscopically representative and statistically reliable measures of cluster volume fraction, number density and size. In the present study, SANS was applied to uncover the size distribution of clusters in as-irradiated samples of a VVER-1000 weld and their gradual dissolution as function of the post-irradiation annealing temperature. The same samples were used to measure Vickers hardness. The results are consistent with Mn-Ni-Si-rich clusters of less than 2 nm radius to be the dominant source of both scattering and hardening. Annealing gave rise to small but significant partial recovery at 350°C and almost complete recovery at 475°C. The dispersed-barrier hardening model was applied to bridge the gap between the characteristics of nano-features and macro-hardness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.