Paper describes in detail and gives example of the probabilistic assessment of a steel structural element subject to fatigue load, particular attention being paid to cracks from the edge and those from surface. Fatigue crack damage depends on a number of stress range cycles. Three sizes are important for the characteristics of the propagation of fatigue cracks -the initial size, detectable size and acceptable size. The theoretical model of fatigue crack progression in paper is based on a linear fracture mechanics. When determining the required degree of reliability, it is possible to specify the time of the first inspection of the construction which will focus on the fatigue damage. Using a conditional probability, times for subsequent inspections can be determined. For probabilistic calculation of fatigue crack progression was used the original and new probabilistic methods -the Direct Optimized Probabilistic Calculation ("DOProC"), which is based on optimized numerical integration. The algorithm of the probabilistic calculation was applied in the FCProbCalc code ("Fatigue Crack Probabilistic Calculation"), using which is possible to carry out the probabilistic modelling of propagation of fatigue cracks in a user friendly environment very effectively.
The purpose of the paper is to perform a static analysis of a thin-wall cold-rolled steel cross-section of a trapezoidal sheet by means of a mathematical model developed in ANSYS, commercially available software applications. The trapezoidal sheets are used typically as an external cladding which covers the structures of steel halls. Investigating into behaviour of the trapezoidal sheets subjected to extreme loads represents an urgent issue in wind engineering. A physical tension test has been performed in order to verify and confirm the mathematical model. Experiments have been performed to prove results of the static analysis into the behaviour of a load-carrying structure formed by a thin-wall cross-section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.