Adverse effects of microplastics on soil abiotic properties have been attributed to changes in the soil structure. Notably, however, the effects on the supramolecular structure of soil organic matter (SOM) have been overlooked, despite their key role in most soil properties. This work accordingly investigated the influence of plastic residues at various concentrations on the SOM supramolecular structure and soil water properties. To model plastic residues of micro-bioplastics, spherical or spherical-like poly-3-hydroxybutyrate (PHB) was used, while polyethylene terephthalate (PET) was used as a model of conventional microplastics. The results suggest that both types of plastic residues affect SOM properties, including physical stability (represented by water molecule bridges), water binding (represented by decreased desorption enthalpy or faster desorption), and the stability of SOM aliphatic crystallites. The results further showed that the polyester-based microplastics and micro-bioplastics affected the SOM abiotic characteristics and that therefore the observed effects cannot be attributed solely to changes in the whole soil structure. Notably, similar adverse effects on SOM were observed for both tested plastic residues, although the effect of PHB was less pronounced compared to that of PET.
Conventional plastics are being slowly replaced by biodegradable ones to prevent plastic pollution. However, in the natural environment, the biodegradation of plastics is usually slow or incomplete due to unfavorable conditions and leads to faster micro-bioplastic formation. Many analytical methods were developed to determine microplastics, but micro-bioplastics are still overlooked. This work presents a simple method for determining poly-3-hydroxybutyrate and polylactic acid micro-bioplastics in soil based on the thermogravimetry–mass spectrometry analysis of low molecular gases evolved during pyrolysis. For the method development, model soils containing different soil organic carbon contents were spiked with micro-bioplastics. Specific gaseous pyrolysis products of the analytes were identified, while the ratio of their amounts appeared to be constant above the level of detection of the suggested method. The constant ratio was explained as a lower soil influence on the evolution of the gaseous product, and it was suggested as an additional identification parameter. The advantages of the presented method are no sample pretreatment, presumably no need for an internal standard, low temperature needed for the transfer of gaseous products and the possibility of using its principles with other, cheaper detectors. The method can find application in the verification of biodegradation tests and in the monitoring of soils after the application of biodegradable products.
Background Poly-3-hydroxybutyrate (P3HB) is a bacterial intracellular carbon and energy storage polymer, used as a thermoplastic polyester in a wide array of industrial and agricultural applications. However, how the soil microbiome and fertility are altered by exogenously applied P3HB has been relatively unexplored. This study aimed to assess the effects of P3HB addition to nutrient restricted soil: its biological properties and lettuce (Lactuca sativa L. var. capitata L.) biomass production. The experiment was designed to evaluate impacts of spatial arrangement of the relatively organic-rich (soil organic matter, P3HB particles) versus poor fractions of the matrix with confounding factors such as variable microbial biomass, inherent nutrient/energy status, different water relations (due to variable hydrophysical properties of soil augmented by sand at different ratios). Results The results revealed that P3HB in soils induced inconsistent to contradictory changes in the microbial abundance as well as in most enzymatic activities. The differences were conditioned by the sand content both under P3HB presence or absence. On the other hand, dehydrogenase, urease activities, basal and substrate-induced soil respirations were mostly enhanced by P3HB addition, directly with increasing sand content (several respiration types). Nevertheless, P3HB significantly inhibited lettuce biomass production. Conclusions P3HB introduction to soil boosts the microbial activity owing to the preferential utilization of P3HB as C source, which depletes soil N and strongly inhibits the plant growth. Enhanced microbial activity in P3HB-amended soils with high sand content (60–80%) suggested that in nutrient-impoverished soil P3HB can temporarily replace SOM as a C source for microbial communities due to the shift of their structure to preferentially P3HB-degrading microbiome. Graphical Abstract
Natural organic matter, including humic substances (HS), comprises complex secondary structures with no defined covalent chemical bonds and stabilized by inter- and intra-molecular interactions, such as hydrogen bonding, Van der Waal’s forces, and pi-pi interactions. The latest view describes HS aggregates as a hydrogel-like structure comprised by a hydrophobic core of aromatic residues surrounded by polar and amphiphilic molecules akin a self-assembled soft material. A different view is based on the classification of this material as either mass or surface fractals. The former is intended as made by the clustering of macromolecules generating dendritic networks, while the latter have been modelled in terms of a solvent-impenetrable core surrounded by a layer of lyophilic material. This study reviews the evolution of the increasingly refined models that appeared in the literature, all capable to describing the physicochemical properties of HS. All the models are critically examined and revisited in terms of their ability to provide key information on the structural organization of HS. Understanding how the molecular association pathway influences aggregation of HS also provides a key acknowledgment of their role in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.