microRNAs are noncoding RNAs inhibiting expression of numerous target genes, and a few have been shown to act as oncogenes or tumor suppressors. We show that microRNA-7 (miR-7) is a potential tumor suppressor in glioblastoma targeting critical cancer pathways. miR-7 potently suppressed epidermal growth factor receptor expression, and furthermore it independently inhibited the Akt pathway via targeting upstream regulators. miR-7 expression was down-regulated in glioblastoma versus surrounding brain, with a mechanism involving impaired processing. Importantly, transfection with miR-7 decreased viability and invasiveness of primary glioblastoma lines. This study establishes miR-7 as a regulator of major cancer pathways and suggests that it has therapeutic potential for glioblastoma. [Cancer Res 2008;68(10):3566-72]
MicroRNAs (miR) show characteristic expression signatures in various cancers and can profoundly affect cancer cell behavior. We carried out miR expression profiling of human glioblastoma specimens versus adjacent brain devoid of tumor. This revealed several significant alterations, including a pronounced reduction of miR-128 in tumor samples. miR-128 expression significantly reduced glioma cell proliferation in vitro and glioma xenograft growth in vivo. miR-128 caused a striking decrease in expression of the Bmi-1 oncogene, by direct regulation of the Bmi-1 mRNA 3 ¶-untranslated region, through a single miR-128 binding site. In a panel of patient glioblastoma specimens, Bmi-1 expression was significantly up-regulated and miR-128 was down-regulated compared with normal brain. Bmi-1 functions in epigenetic silencing of certain genes through epigenetic chromatin modification. We found that miR-128 expression caused a decrease in histone methylation (H3K27me 3 ) and Akt phosphorylation, and up-regulation of p21 CIP1 levels, consistent with Bmi-1 down-regulation. Bmi-1 has also been shown to promote stem cell self-renewal; therefore, we investigated the effects of miR-128 overexpression in human glioma neurosphere cultures, possessing features of glioma ''stem-like'' cells. This showed that miR-128 specifically blocked glioma self-renewal consistent with Bmi-1 downregulation. This is the first example of specific regulation by a miR of a neural stem cell self-renewal factor, implicating miRs that may normally regulate brain development as important biological and therapeutic targets against the ''stem cell-like'' characteristics of glioma. [Cancer Res 2008;68(22):9125-30]
Summary To sustain tumor growth, cancer cells must be able to adapt to fluctuations in energy availability. We have identified a single microRNA that controls glioma cell proliferation, migration, and responsiveness to glucose deprivation. Abundant glucose allows relatively high miR-451 expression, promoting cell growth. In low glucose, miR-451 levels decrease, slowing proliferation but enhancing migration and survival. This allows cells to survive metabolic stress and seek out favorable growth conditions. In glioblastoma patients, elevated miR-451 is associated with shorter survival. The effects of miR-451 are mediated by LKB1, which it represses through targeting its binding partner, CAB39 (MO25α). Overexpression of miR-451 sensitized cells to glucose deprivation, suggesting that its downregulation is necessary for robust activation of LKB1 in response to metabolic stress. Thus, miR-451 is a regulator of the LKB1/AMPK pathway, and this may represent a fundamental mechanism that contributes to cellular adaptation in response to altered energy availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.