The modern Nile delta developed in the Middle and Late Holocene, and at its most northern-central point is situated at the Burullus Lagoon, which is environmentally diverse, including salt marshes, mudflats, and sand plains, and separated from a sea by a sand barrier overtopped with high sand dunes. The lagoon has been fed since the Middle Holocene by the Sebennitic branch of the Nile and marine intrusions through the Bughaz inlet. A sediment core (BO-1) was collected at the northeastern shore of the lagoon and sampled at centennial scale resolution in order to reconstruct the development of the lagoon. The results show that an initial and limited lagoon had developed at the end of the Early Holocene, but after a dry period ca. 7.2 cal ka BP it has been progressively transformed into a marshy area, with occasional inflows of sea water. Lower water level and higher salinity of the Burullus Lagoon at 6.0–5.5 and 4.8–4.2 cal ka BP reflected droughts in the Nile catchment. Thereafter, the river reactivated in the Burullus Lagoon area, and since 2.8 cal ka BP was accompanied by occasional inflows of sea water. Since ca. 0.8 cal ka BP, increased fluvial activity occurred in this part of the Nile delta, which terminated after construction of the Aswan dams in the twentieth century.
<p>Aeolian dune field pattern could provide a very detailed image of the influence of environmental controlling factors (wind regime, topography, sediment supply and others) to its development. Moravian Sahara dune field located in Southern Moravia, Czechia, and thus far away from the European Sand Belt (i.e. the area of major aeolian accumulations in Europe), represent a unique archive reflecting the effects of these variables. Even despite its remoteness from the Fennoscandian Ice Sheet during the Last Glacial Maximum, the permafrost occurred in Southern Moravia, and thus periglacial processes operated here. Different approaches including LiDAR DTM analysis, ground-penetration radar (GPR), and near-surface wind modelling were applied to investigate the role of the controlling factors. Two groups of differently oriented periglacial-related dunes (ENE-WSW and N-S) have been distinguished via the DTMs, suggesting a significant twist in atmospheric circulation connected with the retreat of the Fennoscandian Ice Sheet after the Last Glacial Maximum. Beside that, a strong influence of the local topography to the modification of the wind flow and the possible sediment sources were distinguished and described. Furthermore, confrontation of the reconstructed palaeowind directions with the modelled atmospheric circulation during the Weichselian and the OSL ages of aeolian sediments enabled the temporal assignment of the Moravian Sahara dune field development to the Late Pleniglacial and Late Glacial periods. Thus, our results show their applicability to the very detailed study of the influence of environmental conditions on the development of the cold-climate aeolian dune fields.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.