A processing-microstructure-performance approach is followed to study three bearing steel samples manufactured from the most frequently used continuous casting routes. The inclusion microstructures of the samples were altered by varying the metallurgy and hot working conditions. Inclusion size distribution information is obtained, showing the steel-making route that results in the highest cleanliness. 3D analysis of inclusion morphologies using electrolytic extraction indicates the irregularities on the surface to be favourable sites for crack nucleation under RCF. Flat-washer and ball-on-rod tests were conducted to study the rolling contact fatigue life of the steels, with the results from the flatwasher testing method being more representative for bearing life. This research suggests that early fatigue of bearings is governed by silicate fragmentation and late fatigue by TiN inclusions.
The microstructure of most hard steels used in tribological applications is inhomogeneous at a micro-scale. This results in local variations in chemical composition and mechanical properties. On a similar scale, tribofilms formed by ZDDP and other anti-wear additives are commonly observed to exhibit a patch-like morphology. ZDDP tribofilms formed under controlled contact conditions on four di↵erent steel grades were carefully studied with a new AFM technique to analyse the relationship between the steel microstructure and the tribofilm morphology. Tribofilms were found to be thinner on residual carbides than on the martensitic matrix in all grades containing residual carbides. In most cases, the di↵erence in tribofilm thickness is larger than the carbide protrusion.
The effectiveness of antiwear additives in laboratory tests is commonly evaluated using specimens made of AISI 52100 through-hardened bearing steel. However, many lubricated machine components are made of steels with significantly different material compositions, which raises an important practical question of whether the performance of antiwear additives with these other steel types is different from that established with AISI 52100. To help answer this question, this paper investigates the influence of steel composition on the formation and effectiveness of antiwear films. Four steels that are commonly used in tribological applications, namely AISI 52100 through-hardened bearing steel, 16MnCr5 case-carburised gear steel, M2 high speed steel and 440C stainless steel are tested in rolling-sliding, ball-on-disc contacts lubricated with three custom-made oils, one containing ZDDP and two containing different types of ashless antiwear additives. The relative effectiveness of their boundary films was assessed by measuring their thickness and associated wear and friction over 12 h of rubbing at two specimen roughness levels. For ZDDP it was found that the formation of antiwear film was not significantly influenced by steel composition or specimen surface roughness. A similar tribofilm thickness, final tribofilm roughness and friction was observed with all four steels. No measurable wear was observed. By contrast, for the ashless antiwear additives the thickness and effectiveness of their tribofilms was strongly influenced by steel composition, particularly at higher roughness levels. The exact trends in film thickness vs steel relationship depended on the specific chemistry of the ashless additive (ester-based or acid-based) but in general, relative to AISI 52100 steel, M2 steel promoted ashless tribofilm formation whilst 440C retarded ashless tribofilm formation. This behaviour is attributed to the presence of different alloying elements and the ability of the additives to extract metal cations from the rubbing surfaces to support the growth of a tribofilm. In all cases ZDDP films were thicker and rougher, and produced higher friction than those formed by the ashless additives. However, unlike ZDDP, ashless blends generally produced significant wear, particularly with 16MnCr5 and M2 steels. The results indicate that to ensure reliable performance of a given machine component, the chemistry of an ashless antiwear additive should be matched with the types of steel present in the lubricated machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.