Abstract. The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 − 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76 Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76 Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 10 28 years, using existing resources as appropriate to expedite physics results.
Radionuclide impact of the Fukushima Dai-ichi nuclear power plant accident on the distribution of radionuclides in seawater of the NW Pacific Ocean is compared with global fallout from atmospheric tests of nuclear weapons. Surface and water column seawater samples collected during the international expedition in June 2011 were analyzed for 134Cs, 137Cs, 129I and 3H. The 137Cs, 129I and 3H levels in surface seawater offshore Fukushima varied between 0.002–3.5 Bq L−1, 0.01–0.8 μ Bq L−1, and 0.05–0.15 Bq L−1, respectively. At the sampling site about 40 km from the coast, where all three radionuclides were analyzed, the Fukushima impact on the levels of these three radionuclides represent an increase above the global fallout background by factors of about 1000, 30 and 3, respectively. The water column data indicate that the transport of Fukushima-derived radionuclides downward to the depth of 300 m has already occurred. The observed 137Cs levels in surface waters and in the water column are in reasonable agreement with predictions obtained from the Ocean General Circulation Model, which indicates that the radionuclides have been transported from the Fukushima coast eastward. The 137Cs inventory in the water column (the area from 34 to 37° N, and from 142 to 147° E) due to the Fukushima accident is estimated to be about 2.2 PBq. The amount of 129I and 3H released and deposited on the NW Pacific Ocean after the Fukushima accident was estimated to be about 7 GBq and 0.1 PBq, respectively. Due to a suitable residence time in the ocean, Fukushima-derived radionuclides will provide useful tracers for isotope oceanography studies on the transport of water masses in the NW Pacific Ocean
Abstract. Radionuclide impact of the Fukushima Dai-ichi nuclear power plant accident on the distribution of radionuclides in seawater of the NW Pacific Ocean is compared with global fallout from atmospheric tests of nuclear weapons. Surface and water column samples collected during the Ka'imikai-o-Kanaloa (KOK) international expedition carried out in June 2011 were analyzed for 134Cs, 137Cs, 129I and 3H. The 137Cs, 129I and 3H levels in surface seawater offshore Fukushima varied between 0.002–3.5 Bq L−1, 0.01–0.8 μBq L−1, and 0.05–0.15 Bq L−1, respectively. At the sampling site about 40 km from the coast, where all three radionuclides were analyzed, the Fukushima impact on the levels of these three radionuclides represents an increase above the global fallout background by factors of about 1000, 50 and 3, respectively. The water column data indicate that the transport of Fukushima-derived radionuclides downward to the depth of 300 m has already occurred. The observed 137Cs levels in surface waters and in the water column are compared with predictions obtained from the ocean general circulation model, which indicates that the Kuroshio Current acts as a southern boundary for the transport of the radionuclides, which have been transported from the Fukushima coast eastward in the NW Pacific Ocean. The 137Cs inventory in the water column is estimated to be about 2.2 PBq, what can be regarded as a lower limit of the direct liquid discharges into the sea as the seawater sampling was carried out only in the area from 34 to 37° N, and from 142 to 147° E. About 4.6 GBq of 129I was deposited in the NW Pacific Ocean, and 2.4–7 GBq of 129I was directly discharged as liquid wastes into the sea offshore Fukushima. The total amount of 3H released and deposited over the NW Pacific Ocean was estimated to be 0.1–0.5 PBq. These estimations depend, however, on the evaluation of the total 137Cs activities released as liquid wastes directly into the sea, which should improve when more data are available. Due to a suitable residence time in the ocean, Fukushima-derived radionuclides will provide useful tracers for isotope oceanography studies on the transport of water masses during the next decades in the NW Pacific Ocean.
Tritium, radiocarbon and radiocesium concentrations in water column samples in coastal waters offshore Fukushima and in the western North Pacific Ocean collected in 2011-2012 during the Ka'imikai-o-Kanaloa (KoK) cruise are compared with other published results. The highest levels in surface seawater were observed for Cs andCs in seawater samples collected offshore Fukushima (up to 1.1 Bq L), which represent an increase by about three orders of magnitude when compared with the pre-Fukushima concentration. Tritium levels were much lower (up to 0.15 Bq L), representing an increase by about a factor of 6. The impact on the radiocarbon distribution was measurable, but the observed levels were only by about 9% above the global fallout background. The Cs (and similarlyCs) inventory in the water column of the investigated western North Pacific region was (2.7 ± 0.4) PBq, while for H it was only (0.3 ± 0.2) PBq. Direct releases of highly contaminated water from the damaged Fukushima NPP, as well as dry and wet depositions of these radionuclides over the western North Pacific considerably changed their distribution patterns in seawater. Presently we can distinguish Fukushima labeled waters from global fallout background thanks to short-livedCs. However, in the long-term perspective when Cs will decay, new distribution patterns ofH, C andCs in the Pacific Ocean should be established for future oceanographic and climate change studies in the Pacific Ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.