Due to the increasing demand for battery raw materials such as cobalt, nickel, manganese, and lithium, the extraction of these metals not only from primary, but also from secondary sources like spent lithium-ion batteries (LIBs) is becoming increasingly important. One possible approach for an optimized recovery of valuable metals from spent LIBs is a combined pyro- and hydrometallurgical process. According to the pyrometallurgical process route, in this paper, a suitable slag design for the generation of slag enriched by lithium and mixed cobalt, nickel, and copper alloy as intermediate products in a laboratory electric arc furnace was investigated. Smelting experiments were carried out using pyrolyzed pelletized black mass, copper(II) oxide, and different quartz additions as a flux to investigate the influence on lithium-slagging. With the proposed smelting operation, lithium could be enriched with a maximum yield of 82.4% in the slag, whereas the yield for cobalt, nickel, and copper in the metal alloy was 81.6%, 93.3%, and 90.7% respectively. The slag obtained from the melting process is investigated by chemical and mineralogical characterization techniques. Hydrometallurgical treatment to recover lithium is carried out with the slag and presented in part 2.
Due to the increasing demand for battery raw materials, such as cobalt, nickel, manganese, and lithium, the extraction of these metals, not only from primary, but also from secondary sources, is becoming increasingly important. Spent lithium-ion batteries (LIBs) represent a potential source of raw materials. One possible approach for an optimized recovery of valuable metals from spent LIBs is a combined pyro- and hydrometallurgical process. The generation of mixed cobalt, nickel, and copper alloy and lithium slag as intermediate products in an electric arc furnace is investigated in part 1. Hydrometallurgical recovery of lithium from the Li slag is investigated in part 2 of this article. Kinetic study has shown that the leaching of slag in H2SO4 takes place according to the 3-dimensional diffusion model and the activation energy is 22–24 kJ/mol. Leaching of the silicon from slag is causing formation of gels, which complicates filtration and further recovery of lithium from solutions. The thermodynamic study presented in the work describes the reasons for the formation of gels and the possibilities of their prevention by SiO2 precipitation. Based on these findings, the Li slag was treated by the dry digestion (DD) method followed by dissolution in water. The silicon leaching efficiency was significantly reduced from 50% in the direct leaching experiment to 5% in the DD experiment followed by dissolution, while the high leaching efficiency of lithium was maintained. The study takes into account the preparation of solutions for the future trouble-free acquisition of marketable products from solutions.
Various types of waste, including dusts, are produced in the pyrometallurgical production of copper from secondary raw materials. According to the European Waste Catalogue and Hazardous Waste List, dusts from secondary copper production are classified as hazardous waste. In secondary copper production 3.87 million tons of copper were produced worldwide in 2017. The dusts are produced in the following thermal operations: reduction of the melt in the shaft furnace (shaft furnace dust), converting (converter dust), and pyrometallurgical refining (refining dust). These dusts contain significant amounts of heavy metals (Zn, Pb, and Sn) in oxidic forms. The dusts are regarded as secondary raw materials, and it is necessary to look for ways of extracting these heavy metals. The aim of this work was to characterize the individual types of dust and determine their quantitative and qualitative composition. The content of heavy metals in copper shaft furnace dust is (52.16% Zn, 19.33% Pb), in copper converter dust (32.40% Zn, 14.46% Pb), and in refining dust (32.99% Zn).
Silica gel/alginate/poly(aspartic acid) composite beads were prepared for immobilization of lipase B enzyme from Candida antarctica (CaLB). CaLB was first adsorbed on functionalized mesoporous silica gel particles, which were then entrapped in the interpenetrating network of thiolated poly(aspartic acid) and alginate, cross-linked by zinc ions. Finally, the beads were chemically stabilized by poly(ethylene glycol) diglycidyl ether, a bisepoxide cross-linker. In this manner, spherical biocatalysts with a diameter of 3-4 mm were prepared and their biocatalytic performance was tested by kinetic resolution of racemic 1-phenylethanol. The activity of CaLB in the beads was comparable to that of CaLB physically adsorbed on silica gel particles. The composite beads were easy to recover after use and no loss of biocatalytic activity was observed even after five test reaction cycles. Furthermore, the CaLB in the composite beads showed sufficient thermal stability up to 90°C, contrary to CaLB adsorbed only on silica gel particles.
Copper anode furnace dust is waste by-product of secondary copper production containing zinc, lead, copper, tin, iron and many other elements. Hydrometallurgical Copper Anode Furnace dust recycling method was studied theoretically by thermodynamic calculations and the proposed method was verified experimentally on a laboratory scale. The optimum condition for leaching of zinc from dust was identified to be an ambient leaching temperature, a liquid/solid ratio of 10 and H2SO4 concentration of 1 mol/L. A maximum of 98.85% of zinc was leached under the optimum experimental conditions. In the leaching step, 99.7% of lead in the form of insoluble PbSO4 was separated from the other leached metals. Solution refining was done by combination of pH adjustment and zinc powder cementation. Tin was precipitated from solution by pH adjustment to 3. Iron was precipitated out of solution after pH adjustment to 4 with efficiency 98.54%. Copper was selectively cemented out of solution (99.96%) by zinc powder. Zinc was precipitated out of solution by addition of Na2CO3 with efficiency of 97.31%. ZnO as final product was obtained by calcination of zinc carbonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.