In the current study the investigated brush-plated gold coatings are generally used for repairing the commutators of generators and sliding contacts made in most cases of copper. Considering the cost, gold is sometimes replaced by silver in manufacturing electronic components.
Nickel-hardened gold and silver coatings were brush plated from a commercial SIFCO Dalic Solution (Gold Hard Alloy), Code SPS 5370, and Silver Hard Heavy Build, Code SPS 3080, on unclosed thin-walled copper ring substrates.
The magnitudes of the modulus of elasticity and of nanohardness of the coatings were obtained by instrumented indentation using the MTS Nano Indenter XR® and the Micromaterials Nano Test system pendulum-type nanohardness tester. Residual stresses in the coatings were calculated from the curvature changes of the substrates and they represented tensile stresses. Relaxation of residual stresses was observed. An equation for approximation of the change of residual stresses was applied assuming that the dependence of residual stresses on relaxation time is linear-fractional. The values of residual stresses in the gold and silver coatings decreased considerably, during the first weeks in particular. The equation for approximation of the change of residual stresses allows to predict the finishing residual stresses in the coating for the exploitation period within the limits of measurement uncertainty.
The surface morphology and microstructure of the coatings was studied by means of scanning electron microscopy (SEM).
Physical Vapour Deposition and PVD coatings are designed for several applications, from industrial to biomedical. Residual stresses, arising during coating deposition, have important effect on the coating’s service life as their influence to the mechanical and tribological properties. Our aim was to investigate the residual stresses in five different PVD coatings (TiN, TiCN, TiAlN, TiAlN, nc-(AlTi) N/α -Si3N4) (presence of the Ti as adhesion layer) by the layer growing curvature method and the X-ray diffraction techniques using a plate and a strip as the substrate. Residual stresses were compressive and very large (2.98 - 7.24) GPa in all coatings and comparable in TiN, TiAlN, TiAlN coatings in the case of both methods. The magnitude of residual stresses is influenced by intrinsic strain in the case of layer growth rather than by thermal stress.
Nickel-hardened gold and silver coatings were brush-plated from a commercial SIFCO Dalic Solution (Gold Hard Alloy), Code SPS 5370, and Silver Hard Heavy Build, Code SPS 3080, on unclosed thin-walled copper ring substrates. To determine residual stresses, the conventional curvature method (common among the electrodeposition methods) was applied, where the substrate was coated with certain thickness and then the slit increment (bending deflection) of the substrate was measured as an experimental parameter. Residual stresses on gold coatings were also determined by X-ray diffraction (XRD) based on the sin2 method. The values of residual stresses determined by the curvature method and by the XRD technique were comparable. Relaxation of residual stresses was observed. An equation for approximation of the change of residual stresses was applied assuming that the dependence of residual stresses on relaxation time is linear-fractional. The surface morphology and microstructure of the coatings was studied by means of scanning electron microscopy (SEM). The magnitudes of the modulus of elasticity and of the nanohardness of the coatings were obtained by instrumented indentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.