Stretchable polymer composites are a new group of materials with a wide range of application possibilities in wearable electronics. The purpose of this study was to fabricate stretchable electroluminescent (EL) structures using developed polymer compositions, based on multiple different nanomaterials: luminophore nanopowders, dielectric, carbon nanotubes, and conductive platelets. The multi-layered EL structures have been printed directly on textiles using screen printing technology. During research, the appropriate rheological properties of the developed composite pastes, and their suitability for printed electronics, have been confirmed. The structure that has been created from the developed materials has been tested in terms of its mechanical strength and resistance to washing or ironing.
Recently, low-cost electronics printed on lightweight, flexible and 3D shaped substrates are gaining importance in the markets of wearables and smart packaging. However, printed electronics do not meet the electrical performance of subtractive techniques because the resistivity of metallic printed patterns is still much higher than that of bulk material. To fulfil this need, low-resistive and easy printable inks for high resolution printed electronics techniques are needed. In this work, parameters of silver nanoparticles ink for micro-scale printed electronics technique, Aerosol Jet Printing, are being enhanced. To increase electrical conductivity and enhance printability, surfactants and dispersing agents were used to increase ultrasonic atomisation efficiency, obtain a uniform structure of printed lines, and narrow the width of printed patterns. Electrical measurements show a decrease in resistivity value in samples enhanced by cationic and non-ionic surfactants, by 95%, compared to initially prepared inks. Surfactant additions to silver nanoparticles Aerosol Jet Printing ink show promising features for application in modern electronics.
Gas sensors are widely used in many industrial and home applications. There is therefore continued need to develop novel gas sensor substrates which provide good mechanical and electrical stability, and good flexibility in comparison with the conventional alumina and silicon-based materials. In this paper, we present the experimental results on flexible gas sensors based on the Kapton foil and alumina substrate covered by copper oxide as a gas-sensitive layer. These sensors exhibited good mechanical stability and gas-sensing characteristics. The Kapton-based CuO gas sensors were tested under exposure to acetone in the 0.05-1.25 ppm range (150 °C, 50%RH). The results confirmed that sensors deposited on the flexible substrate such as Kapton can be used in the exhaled breath analyzers dedicated to diabetes biomarker detection or other applications for which the elastic substrate is needed.
Graphic Abstract
Biofilms are microbial communities of surface-attached cells embedded in a self-produced extracellular matrix. They have been found to play a role in a wide variety of infections, including catheter-related urinary tract and bloodstream infections, and, therefore remain a significant source of morbidity and mortality among the world's population. Recently, much attention has been devoted to the prevention of biofilm formation on implant surfaces. Nanomaterials such as graphene, characterized by antibacterial activity and low toxicity to human cells, are promising candidates for biomedical applications. This study investigates the antibacterial efficiency of graphene and specially produced graphene decorated with silver nanoparticles, obtained by one of the methods of printed electronics (spray-coating system). These methods are not only economical, but also enable the printing of layers of various thicknesses on different types of materials, including flexible and nonplanar substrates. The aim of the study was to reveal the ability of graphene and graphene-nanosilver layers to prevent the formation of Staphylococcus epidermidis biofilm on the surface of a Foley catheter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.