The Lifelog Search Challenge (LSC) is an international content retrieval competition that evaluates search for personal lifelog data. At the LSC, content-based search is performed over a multi-modal dataset, continuously recorded by a lifelogger over 27 days, consisting of multimedia content, biometric data, human activity data, and information activities data. In this work, we report on the first LSC that took place in Yokohama, Japan in 2018 as a special workshop at ACM International Conference on Multimedia Retrieval 2018 (ICMR 2018). We describe the general idea of this challenge, summarise the participating search systems as well as the evaluation procedure, and analyse the search performance of the teams in various aspects. We try to identify reasons why some systems performed better than others and provide an outlook as well as open issues for upcoming iterations of the challenge.
The Lifelog Search Challenge (LSC) is an annual comparative benchmarking activity for comparing approaches to interactive retrieval from multi-modal lifelogs. LSC'20, the third such challenge, attracts fourteen participants with their interactive lifelog retrieval systems. These systems are comparatively evaluated in front of a live-audience at the LSC workshop at ACM ICMR'20 in Dublin, Ireland. This overview motivates the challenge, presents the dataset and system configuration used in the challenge, and briefly presents the participating teams. CCS CONCEPTS • Human-centered computing → Empirical studies in interaction design; • Information systems → Mobile information processing systems; Search interfaces.
The signature quadratic form distance has been introduced as an adaptive similarity measure coping with flexible content representations of multimedia data. While this distance has shown high retrieval quality, its high computational complexity underscores the need for efficient search methods. Recent research has shown that a huge improvement in search efficiency is achieved when using metric indexing. In this paper, we analyze the applicability of Ptolemaic indexing to the signature quadratic form distance. We show that it is a Ptolemaic metric and present an application of Ptolemaic pivot tables to image databases, resolving queries nearly four times as fast as the state-of-the-art metric solution, and up to 300 times as fast as sequential scan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.