Computation of moments of transformed random variables is a problem appearing in many engineering applications. The current methods for moment transformation are mostly based on the classical quadrature rules which cannot account for the approximation errors. Our aim is to design a method for moment transformation for Gaussian random variables which accounts for the error in the numerically computed mean. We employ an instance of Bayesian quadrature, called Gaussian process quadrature (GPQ), which allows us to treat the integral itself as a random variable, where the integral variance informs about the incurred integration error. Experiments on the coordinate transformation and nonlinear filtering examples show that the proposed GPQ moment transform performs better than the classical transforms.
The sigma-point filters, such as the unscented Kalman filter, are popular alternatives to the ubiquitous extended Kalman filter. The classical quadrature rules used in the sigmapoint filters are motivated via polynomial approximation of the integrand; however, in the applied context, these assumptions cannot always be justified. As a result, a quadrature error can introduce bias into estimated moments, for which there is no compensatory mechanism in the classical sigma-point filters. This can lead in turn to estimates and predictions that are poorly calibrated. In this article, we investigate the Bayes-Sard quadrature method in the context of sigma-point filters, which enables uncertainty due to quadrature error to be formalized within a probabilistic model. Our first contribution is to derive the well-known classical quadratures as special cases of the Bayes-Sard quadrature method. Based on this, a general-purpose moment transform is developed and utilized in the design of a novel sigma-point filter, which explicitly accounts for the additional uncertainty due to quadrature error.
Abstract-The aim of this article is to design a moment transformation for Student-t distributed random variables, which is able to account for the error in the numerically computed mean. We employ Student-t process quadrature, an instance of Bayesian quadrature, which allows us to treat the integral itself as a random variable whose variance provides information about the incurred integration error. Advantage of the Student-t process quadrature over the traditional Gaussian process quadrature, is that the integral variance depends also on the function values, allowing for a more robust modelling of the integration error. The moment transform is applied in nonlinear sigma-point filtering and evaluated on two numerical examples, where it is shown to outperform the state-of-the-art moment transforms.
The paper proposes a suboptimal adaptive control for a nonlinear stochastic system subject to functional uncertainty. The problem of a real-time identification of the unknown nonlinear system is tackled by using the Gaussian process based non-parametric model. The covariance function of the Gaussian process is chosen in such a way that allows deriving the control law in a closed form. The control action stems from the bicriterial dual approach that uses two separate criteria to introduce both of the mutually opposing aspects between estimation and control. Properties of the novel dual controller are tested and validated in a numerical example by Monte Carlo analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.