The paper presents an attempt to use milled waste of carbon fiber reinforced polymer (rCFRP) laminates as fillers for polyester resin. The obtained polyester-rCFRP composites were tested for technological, mechanical and frictional properties. It was found that the viscosity increased for the compositions containing rCFRP particles in comparison to the neat resin. Flexural strength improved in comparison to the neat resin, but only for the composites filled with a fraction containing particles below 0.2 mm in diameter and a mixed-diameter particles fraction. For composites containing the above-mentioned fractions, a significant reduction in the dynamic friction coefficient and a reduction in wear (the weight loss after friction test) were found. The obtained results indicate the advisability of further research and optimization of this new type of composites in terms of frictional applications.
In this paper, sedimentation inhibition attempts were examined using colloidal silica in a mathematical and experimental approach. Experimental results were validated by a two-step verification process. It was demonstrated that application of quantitative metallography and hardness measurements in three different regions of samples allows us to describe the sedimentation process using modified Stokes law. Moreover, proper application of Stokes law allows one to determine the optimal colloidal silica amount, considering characteristics of applied filler (alumina or graphite). The results of mathematical calculations have been confirmed experimentally—the experimental results show good agreement with the calculated data.
This work is devoted to evaluating the effectiveness of the recovery of carbon fibers from end-of-life wind turbine blades in the pyrolysis process, and the use of those fibers in the production of flat composite panels. The recovery of carbon fibers from wind turbine blades uses a pyrolysis process at 500–600 °C in a non-oxidizing atmosphere, in such a way that makes it possible to preserve the shape and dimensions of the fibers. Using recycled carbon fibers, flat CFRP sheets with epoxy resin matrix were produced by pressing. Seven different series of samples were tested, which differed in fiber length, fiber orientation, and pressure holding time. The results obtained on the recycled fibers were compared to the original carbon fibers, cut to corresponding lengths. Additionally, one of the series was reinforced with a biaxial fabric. The most favorable pressing parameters are empirically found to be pre-pressing 2 MPa (10 min), and further pressing at a pressure of 7 MPa until the resin completely cross-linked (about 120 min). A number of tests were carried out to demonstrate the usefulness of pyrolytic fibers, including tensile strength of carbon fibers, bending strength, SEM observations, FT-IR, and Raman spectroscopy. The tests carried out on the carbon fibers show that the pyrolysis process used leaves about 2% of the matrix on the surface of the fiber, and the tensile strength of the fibers drops by about 20% compared to the new carbon fibers. The research results show that the use of the recycled carbon fibers in the production of flat composite plates is reliable, and their mechanical properties do not differ significantly from plates made of corresponding original carbon fibers. Composite panels with the pyrolytic fibers (274 MPa) show up to a 35% higher flexural strength than similarly produced panels with the original new carbon fibers (203 MPa), which means that the panels can be used in the production of elements for footbridges, bridges, pipelines, or structural elements of buildings and roofing.
In this paper, we investigated the thermodynamics of the resin curing process, when it was a part of composition with graphite powder and cut carbon fibers, to precisely determine the time and temperature of gelation. The material for the research is a set of commercial epoxy resins with a gelation time not exceeding 100 min. The curing process was characterized for the neat resins and for resins with 10% by weight of flake graphite and cut carbon fibers. The results recorded in the analysis of temperature derivative (ATD) method unequivocally showed that the largest first derivative registered during the test is the gel point of the resin. The innovative approach to measuring the gelation time of resins facilitates the measurements while ensuring the stability of the curing process compared to the normative tests that introduce mechanical interaction. In addition, it was found during the research that the introduction of 10% by weight of carbon particles in the form of graphite and cut carbon fibers rather shortens the gelation time and lowers the temperature peak due to the effective absorption and storage of heat from the cross-linking system. The inhibiting (or accelerating) action of fillers is probably dependent on chemical activity of the cross-linking system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.